the latest outcomes

Publications view all
from our users
V. 10809, International Conf. on Extreme Ultraviolet Lithography (2018)
New resist and underlayer approaches toward EUV lithography
Read Abstract
Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) is the most promising candidate to pattern the finest features in the next-generation integrated circuit manufacturing. Chemically-amplified resists (CARs) have long been used as state-of-the art photoresists and have been considered as EUV resist. Recently, inorganic and metal-containing resist materials have received significant attention in both academia and industry areas, with the aim to improve the resist performance in terms of resist resolution (R), line-edge roughness (LER), and sensitivity (S) to solve the well-known RLS trade-off. However, the resists reported to date usually have either problem in terms of RLS trade-off or pose metal contamination, which is a serious issue in expensive EUV equipment. Differently, in this report, we demonstrate our recent success in the development of the photochemistry of silicon compounds and resist formulations to obtain novel EUV negative tone resists with high resolution (up to 22nm pitch line/space patterns), low line-edge roughness (1-3nm) with reasonable EUV sensitivity. We also discuss their high etch selectivity to a PiBond’s SOC organic underlayer, which enable a bilayer lithography stack for EUVL patterning. Their excellent etch performances by RIE plasma is also reported.
Link to publication
our research
Phys. Rev. B 98, 115148 (2018)
The generalized Kadanoff-Baym ansatz with initial correlations
Read Abstract
Within the nonequilibrium Green's function (NEGF) formalism, the generalized Kadanoff-Baym ansatz (GKBA) has stood out as a computationally cheap method to investigate the dynamics of interacting quantum systems driven out of equilibrium. Current implementations of the NEGF-GKBA, however, suffer from a drawback: real-time simulations require noncorrelated states as initial states. Consequently, initial correlations must be built up through an adiabatic switching of the interaction before turning on any external field, a procedure that can be numerically highly expensive. In this work, we extend the NEGF-GKBA to allow for correlated states as initial states. Our scheme makes it possible to efficiently separate the calculation of the initial state from the real-time simulation, thus paving the way for enlarging the class of systems and external drivings accessible by the already successful NEGF-GKBA. We demonstrate the accuracy of the method and its improved performance in a model donor-acceptor dyad driven out of equilibrium by an external laser pulse.
Link to publication
from our users
V. 10775, 34th European Mask and Lithography Conference; 1077502 (2018)
Multi-trigger resist for electron beam and extreme ultraviolet lithography
Read Abstract
The multi-trigger resist (MTR) is a new negative tone molecular resist platform for electron beam lithography, as well as extreme ultraviolet and optical lithography. The performance of xMT resist, the precursor to MTR resist, which shows a good combination of sensitivity, low line edge roughness and high-resolution patterning has previously been reported.[1] In order to overcome limitations induced by acid diffusion, a new mechanism - the multi-trigger concept - has been introduced. The results obtained so far as the behaviour of the resist is driven towards the multi-trigger regime by manipulating the resist formulation are presented. A feature size of 13 nm in semi-dense (1:1.5 line/space) patterns, and 22nm diameter pillar patterns are demonstrated in electron beam, and 16 nm half-pitch resolution patterns are demonstrated in (extreme ultraviolet) EUV. An improvement in the LER value is seen in the higher MTR formulations. © (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Link to publication
Deliverables view all
WP7 - JRA2 - Research on High Precision Manufacturing
D7.15 - Realization of coplanar electrode arrays with 10 nm gaps
Read Abstract
There is growing interest in the study of the electrical properties of single nano-objects. This deliverable demonstrates the successful fabrication of arrays of nanogaps via exploiting the precision of growth processes for lateral patterning, as the nanogaps arrays could be used as a substrate to correlate the structural properties of nanomaterials immobilized between the gaps with their electrical properties. In particular, technologies for fabrication of metallic nanogaps down to 10 nm and nanogaps arrays, as well as arrays of individual nanogaps, have been developed. Also fabrication parameters have been optimized for minimising leakage currents and improving electrode characteristics. Current technology is now readilly available for the needs of NFFA users via the transnational access procedure.
Download full report
WP10 - JRA5 – Nano-Object Transfer and Positioning
D10.6 - Test experiment of transfer and positioning system to a soft X-ray microscopy setup
Read Abstract
This JRA5 deliverable report D10.6 “Test experiment of transfer and positioning system to a soft Xray microscopy setup” describes the status of the implementation of the transfer and positioning system to the soft X-ray microscopy setups at SOLEIL, France. All technical prerequisites have been developed, are readily available for use and are in particular as part already offered to NFFA transnational access users. In particular, both, the nano-transfer tool developed within JRA5, including the three columns i) the Matlab and Python implementation of the software script, ii) the “hierarchical marker design on demand” as well as iii) the electron- (EBID) and ion-(IBID) induced deposition, as well as the capabilities for a nano-transfer at the SOLEIL beamlines are all implemented and integrated. The goals of all three columns have been achieved, as separately documented in several JRA5 deliverable reports. The software-setup and the marker technology has been tested and approved, and are ready to use. At the soft X-ray beamlines at SOLEIL dedicated for the “Advanced Nano- Object Transfer and Positioning” the equipment and technical infrastructure ensures compatibility and easy implementation. In a test experiment to be scheduled at the time of the deadline, the full integration of the nanotransfer tool on one hand and the positioning devices at the SOLEIL beamline at the other hand will be shown. At the same time, the array markers created by direct-write non-linear lithography at FORTH will be utilised to permit a nano-transfer based on the re-location of selected nano-objects at a nano-science centre to a soft-X-ray beamline setup at an Analytical Large Scale Facility (ALSF). We in particular stress here that the compatibility between the modular transfer and positioning system and the hardware at the two dedicated SOLEIL parallel imaging X-ray photoemission electron microscope (XPEEM) and the scanning microscope (STXM) beamlines at SOLEIL has been achieved and the technical feasibility of D10.6 is assured.
Download full report
WP11 - NA – Innovation and networking activities
D11.15 - Third Annual report on NFFA-EUROPE dissemination activities
Read Abstract
The dissemination and awareness activities of NFFA-Europe heavily contributed to the success of the NFFA-Europe project. Its very positive impact to the TransNational Access programme, this is shown by the large number of proposals submitted for the use of the NFFA-Europe infrastructure. During the third year, the activities were not only kept at the same level of the previous years but were broadened, because the end of the project is still far away and there is atill enough time to approach new users for let them use the infrastructure available within the NFFA-Europe project. During the third year the NFFA-Europe project has been presented at 22 conferences; two dedicated NFFA-Europe events have been organized; two issues of the NFFA-Europe Newsletter have been published and distributed to a number of scientists; an advertisment page has been published reaching a huge number of scientists. The international collaborations to US and Australian similar projects are producing good results in terms of future collaborations. The NFFA-Europe dissemination programme is definitely in line with the expectations.
Download full report
Transnational Access Statistics
11 calls for access
355 proposals submitted
65% rate of acceptance
32% with Large Scale Facilities
13% with theory
10% with industry
~3 average users per proposal
43 countries applying
1023 lab sessions