31 Oct 2024
Investigating materials and processes in realistic environments is crucial for understanding and designing materials for applications in energy storage, catalysis, corrosion resistance, and nanotechnology. In this context, one of the key objectives of JA1 is to integrate operando capabilities into scanning tunneling microscopy (STM) experiments in multiphase environments. Specifically, sub-task 11.1.2 focuses on setting up versatile electrochemical STM (EC-STM) systems and developing user-friendly protocols for in-situ electrochemical STM, enabling operation at solid/liquid interfaces under well-defined gas atmospheres and with electrochemical control. To this end, two custom-built EC-STM systems have been set up that are based on the same platform developed by the Wandelt research group (Uni Bonn) that is characterized by a rugged design, great flexibility concerning various electro-chemical environments, and excellent performance regarding lateral spatial resolution [1]. While the system at ICN2 has been developed to offer optimized, user-friendly protocols for external users and will complement the advanced characterization tools available at ICN2 through the NFFA, the reference system at TUM has been optimized to host high-speed capabilities, enabling operando experiments on electrochemically relevant systems with sub-s time resolution. Given TUM's extensive technical and research experience in electrochemical STM, and the fact that both systems share the same design, the transfer of knowledge in nearly all technical aspects has been crucial for the successful implementation of the ICN2 system.31 Aug 2024
Electromagnetic waves with orbital angular momentum (OAM) are increasingly used in optical communications, quantum technologies, and optical tweezers. Recently, they have shown potential for detecting helical dichroic effects in chiral molecules and magnetic nanostructures. In this study, we used single-shot ptychography on a nanostructure with extreme ultraviolet OAM beams of varying topological charge (ℓ) at a free-electron laser. By adjusting ℓ, we improved image resolution by 30% compared to standard Gaussian beams, advancing coherent diffraction imaging and enabling sub-100 nm time-resolved microscopy over large sample areas.31 Aug 2024
In the current document we report on a selection of new processes developed within the NFFA (NEP) project related to advanced nanoengineering for transnational access (TA). They form a new library of process steps enabling new or improved capabilities for some specific nanopatterning. They are complementary and generally compatible with state-of-the-art microelectronics industry. Besides developing the individual core technology, we paid particular attention to novel groupings in a mix-and-match approach to study possible combinations of processes to maximize enabling capabilities for nanosystems manufacturing.