Outcomes

the latest outcomes

Publications view all
from our users
Adv. Sci. 2025, 2415804
Resist-Free Patterning of Halogenated Zeolitic Imidazolate Frameworks by Extreme UV Lithography
Read Abstract
Advancements in patterning techniques for metal–organic frameworks (MOFs) are crucial for their integration into microelectronics. However, achieving precise nanoscale control of MOF structures remains challenging. In this work, a resist-free method for patterning MOFs is demonstrated using extreme ultraviolet (EUV) lithography with a resolution of 40 nm. The role of halogen atoms in the linker and the effect of humidity are analyzed through in situ and near-ambient pressure synchrotron X-ray photoelectron spectroscopy. In addition to facilitating the integration of MOFs, the results offer valuable insights for developing the highly sought-after positive-tone EUV photoresists.
Link to publication
from our users
Small 2025, 2500507
ubstrate Stabilized Charge Transfer Scheme In Coverage Controlled 2D Metal Organic Frameworks
Read Abstract
Recently, 2D metal-organic frameworks (2D MOFs), characterized by complex charge transfer mechanisms, have emerged as a promising class of networks in the development of advanced materials with tailored electronic and magnetic properties. Following the successful synthesis of a 2D MOF formed by nickel (Ni) linkers and 7,7,8,8-tetracyanoquinodimethane (TCNQ) ligands, this work investigates how the Ni-to-ligand ratio influences the electronic charge redistribution in an Ag(100)-supported 2D MOF. The interplay between linker-ligand and substrate-MOF charge transfer processes leads to a stable equilibrium, resulting in a robust electronic structure that remains independent of stoichiometric ratios. This stability is primarily based on the electron transfer from the metal substrate, which compensates for charge imbalances introduced by the metal-organic coordination across different MOF configurations. Despite minor changes observed in the magnetic response of the Ni centers, these findings emphasize the robustness of the electronic structure, which remains largely unaffected by structural variations, highlighting the potential of these 2D MOFs for advanced applications in electronics and spintronics.
Link to publication
our research
Adv. Mater. Interfaces 2025, 2400661
A Pathway Toward Sub-10 nm Surface Nanostructures Utilizing Block Copolymer Crystallization Control
Read Abstract
It is elucidated how crystallization can be used to create lateral surface nanostructures in a size regime toward sub-10 nm using molecular self-assembly of short chain crystallizable block copolymers (BCP) and assist in overcoming the high-χ barrier for microphase separation. In this work, an amphiphilic double-crystalline polyethylene-b-polyethylene oxide (PE-b-PEO) block co-oligomer is used. A crystallization mechanism of the short-chain BCP in combination with neutral wetting of the functionalized substrate surface that permits to form edge-on, extended chain crystal lamellae with enhanced thermodynamic stability. In situ atomic force microscopy (AFM) analysis along with surface energy considerations suggest that upon cooling from the polymer melt, the PE-b-PEO first forms a segregated horizontal lamellar morphology. AFM analysis indicates that the PEO crystallization triggers a morphological transition involving a rotation of the forming extended chain crystals in edge-on orientation. Exposing their crystal side facets to the top surface permits to minimize their interfacial energy and form vertical nanostructures. Moreover, the edge-on lamellae can be macroscopically aligned by directed self-assembly (DSA), one necessity for various nanotechnological applications. It is believed that the observed mechanism to form stable edge-on lamellae can be transferred to other crystallizable short chain BCPs, providing potential pathways for sub-10 nm nanotechnology.
Link to publication
Deliverables view all
WP16 - JA6 - Implementing FAIR data approach within NEP
D16.6 - Final report on data provenance tools for NEP community
Read Abstract
This deliverable summarizes the experience and guidelines for the NFFA community in developing, deploying, and using data provenance tools. It is articulated in 3 sections, dedicated to 1) establishing the high-level provenance of the physical and digital entities of research workflows, 2) automatically integrating this into digital provenance tools, including electronic lab notebooks and workflow management systems, and 3) disseminating this in FAIR modes to the community at large.
Download full report
WP11 - JA1 - Real-time observation and control in microscopy and spectroscopy of nano-objects
D11.7 - Implementation of STM microscopy for investigation of solid/liquid interfaces under welldefined gas atmospheres and with electrochemical control (EC-STM)
Read Abstract
Investigating materials and processes in realistic environments is crucial for understanding and designing materials for applications in energy storage, catalysis, corrosion resistance, and nanotechnology. In this context, one of the key objectives of JA1 is to integrate operando capabilities into scanning tunneling microscopy (STM) experiments in multiphase environments. Specifically, sub-task 11.1.2 focuses on setting up versatile electrochemical STM (EC-STM) systems and developing user-friendly protocols for in-situ electrochemical STM, enabling operation at solid/liquid interfaces under well-defined gas atmospheres and with electrochemical control. To this end, two custom-built EC-STM systems have been set up that are based on the same platform developed by the Wandelt research group (Uni Bonn) that is characterized by a rugged design, great flexibility concerning various electro-chemical environments, and excellent performance regarding lateral spatial resolution [1]. While the system at ICN2 has been developed to offer optimized, user-friendly protocols for external users and will complement the advanced characterization tools available at ICN2 through the NFFA, the reference system at TUM has been optimized to host high-speed capabilities, enabling operando experiments on electrochemically relevant systems with sub-s time resolution. Given TUM's extensive technical and research experience in electrochemical STM, and the fact that both systems share the same design, the transfer of knowledge in nearly all technical aspects has been crucial for the successful implementation of the ICN2 system.
Download full report
WP12 - JA2 - X-ray Wavefront Metrology, Correction and Manipulation
D12.5 - User Experiment with OAM beam
Read Abstract
Electromagnetic waves with orbital angular momentum (OAM) are increasingly used in optical communications, quantum technologies, and optical tweezers. Recently, they have shown potential for detecting helical dichroic effects in chiral molecules and magnetic nanostructures. In this study, we used single-shot ptychography on a nanostructure with extreme ultraviolet OAM beams of varying topological charge (ℓ) at a free-electron laser. By adjusting ℓ, we improved image resolution by 30% compared to standard Gaussian beams, advancing coherent diffraction imaging and enabling sub-100 nm time-resolved microscopy over large sample areas.
Download full report
Transnational Access Statistics
28 calls for access
970 proposals submitted
63% rate of acceptance
29% with Large Scale Facilities
12% with theory
11% with industry
~3 average users per proposal
65 countries applying
2949 lab sessions