Outcomes

the latest outcomes

Publications view all
from our users
Journal of Power Sources Volume 643, 237029
Characterization and testing of strontium titanium ferrite-based solid oxide cells for reversible and co-electrolysis operation
Read Abstract
This study investigates the electrocatalytic performance and the preliminary durability of SrTi0.3Fe0.7O3-delta (STF) and Sr0.95(Ti0.3Fe0.63Ni0.07)O3-delta (STF-Ni) as fuel electrodes for solid oxide cells operated at 750 degrees C in reversible mode with H2/H2O and CO/CO2 mixtures, and in H2O/CO2 co-electrolysis mode. STF-Ni achieved a peak power density of 415 mW/cm2 under 3 % humidified H2, and maintained 96 % of its performance over 96 h of H2/H2O reversible operation. In co-electrolysis, STF-Ni delivered a maximum current density of 540 mA/cm2 at 1.4 V, with 15 % performance drop at 1.2 V after 162 h. Reversible operation with CO/CO2 mixtures proved most challenging, as surface SrCO3 formation caused significant degradation, and stable performance was reached only on STF-Ni. STF-Ni consistently demonstrated superior stability compared to STF across all the operative modes. A 0D model was utilized to analyze the I/V curves of STF-Ni: a power-law rate for the fuel electrode's kinetics with H2 and H2O mixtures was extracted, and the kinetic insensitivity to the CO2 amount in co-electrolysis was proved. Complementary characterization using XRD, TPR, SEM, and TEM techniques highlighted the role of exsolution. After exposure to CO2, compositional changes in exsolved Ni-Fe nanoparticles were observed, with selective reincorporation of Fe into the perovskite structure.
Link to publication
our research
Micromachines 2025, 16, 341
Flow-Induced Shear Stress Combined with Microtopography Inhibits the Differentiation of Neuro-2a Cells
Read Abstract
Considering that neurological injuries cannot typically self-recover, there is a need to develop new methods to study neuronal outgrowth in a controllable manner in vitro. In this study, a precise flow-controlled microfluidic system featuring custom-designed chambers that integrate laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves (MGs) was developed to investigate the combined effect of shear stress and topography on Neuro-2a (N2a) cells' behavior. The MGs were positioned parallel to the flow direction and the response of N2a cells was evaluated in terms of growth and differentiation. Our results demonstrate that flow-induced shear stress could inhibit the differentiation of N2a cells. This microfluidic system could potentially be used as a new model system to study the impact of shear stress on cell differentiation.
Link to publication
from our users
Adv. Sci. 2025, 2415804
Resist-Free Patterning of Halogenated Zeolitic Imidazolate Frameworks by Extreme UV Lithography
Read Abstract
Advancements in patterning techniques for metal–organic frameworks (MOFs) are crucial for their integration into microelectronics. However, achieving precise nanoscale control of MOF structures remains challenging. In this work, a resist-free method for patterning MOFs is demonstrated using extreme ultraviolet (EUV) lithography with a resolution of 40 nm. The role of halogen atoms in the linker and the effect of humidity are analyzed through in situ and near-ambient pressure synchrotron X-ray photoelectron spectroscopy. In addition to facilitating the integration of MOFs, the results offer valuable insights for developing the highly sought-after positive-tone EUV photoresists.
Link to publication
Deliverables view all
WP16 - JA6 - Implementing FAIR data approach within NEP
D16.6 - Final report on data provenance tools for NEP community
Read Abstract
This deliverable summarizes the experience and guidelines for the NFFA community in developing, deploying, and using data provenance tools. It is articulated in 3 sections, dedicated to 1) establishing the high-level provenance of the physical and digital entities of research workflows, 2) automatically integrating this into digital provenance tools, including electronic lab notebooks and workflow management systems, and 3) disseminating this in FAIR modes to the community at large.
Download full report
WP11 - JA1 - Real-time observation and control in microscopy and spectroscopy of nano-objects
D11.7 - Implementation of STM microscopy for investigation of solid/liquid interfaces under welldefined gas atmospheres and with electrochemical control (EC-STM)
Read Abstract
Investigating materials and processes in realistic environments is crucial for understanding and designing materials for applications in energy storage, catalysis, corrosion resistance, and nanotechnology. In this context, one of the key objectives of JA1 is to integrate operando capabilities into scanning tunneling microscopy (STM) experiments in multiphase environments. Specifically, sub-task 11.1.2 focuses on setting up versatile electrochemical STM (EC-STM) systems and developing user-friendly protocols for in-situ electrochemical STM, enabling operation at solid/liquid interfaces under well-defined gas atmospheres and with electrochemical control. To this end, two custom-built EC-STM systems have been set up that are based on the same platform developed by the Wandelt research group (Uni Bonn) that is characterized by a rugged design, great flexibility concerning various electro-chemical environments, and excellent performance regarding lateral spatial resolution [1]. While the system at ICN2 has been developed to offer optimized, user-friendly protocols for external users and will complement the advanced characterization tools available at ICN2 through the NFFA, the reference system at TUM has been optimized to host high-speed capabilities, enabling operando experiments on electrochemically relevant systems with sub-s time resolution. Given TUM's extensive technical and research experience in electrochemical STM, and the fact that both systems share the same design, the transfer of knowledge in nearly all technical aspects has been crucial for the successful implementation of the ICN2 system.
Download full report
WP12 - JA2 - X-ray Wavefront Metrology, Correction and Manipulation
D12.5 - User Experiment with OAM beam
Read Abstract
Electromagnetic waves with orbital angular momentum (OAM) are increasingly used in optical communications, quantum technologies, and optical tweezers. Recently, they have shown potential for detecting helical dichroic effects in chiral molecules and magnetic nanostructures. In this study, we used single-shot ptychography on a nanostructure with extreme ultraviolet OAM beams of varying topological charge (ℓ) at a free-electron laser. By adjusting ℓ, we improved image resolution by 30% compared to standard Gaussian beams, advancing coherent diffraction imaging and enabling sub-100 nm time-resolved microscopy over large sample areas.
Download full report
Transnational Access Statistics
28 calls for access
970 proposals submitted
63% rate of acceptance
29% with Large Scale Facilities
12% with theory
11% with industry
~3 average users per proposal
65 countries applying
2949 lab sessions