Due to the upcoming SLS 2.0 upgrade this technique will be unavailable at PSI until further notice.
EUV-IL uses a spatially coherent beam from the synchrotron with a variable wavelength from 16 nm down to 3 nm (usually operated at 13.5 wavelength where the synchrotron is capable of providing fully coherent illumination). The beam eventually reaches the mask which comprises two or more diffractive gratings fabricated on a silicon nitride membrane. The beams through these gratings form an interference pattern on a photosensitive material previously spin-coated onto a substrate. The tool can provide extremely high resolution patterning for periodic structures. Unlike electron beam lithography which is a direct write technique, EUV-IL can provide very high throughput and it does not suffer from proximity effects. In addition, it is insensitive to charging and therefore insulating substrates are in principle enabled. One or two dimensional patterns are easily obtained by the use of two or multiple beams respectively. In the simple two-beam case, the fringe period is equal to half of the period of the grating on the mask (for first order diffraction). EUV-IL can have various applications: nanoimprint stamps, fluidic confinement structures, plasmonics and metamaterials, polymer grafting, biomaterials, catalysis, templated assembly, cell growth templates, nanomagnetism, Fresnel zone plates, resist evaluation etc.
In SEM a beam is scanned over a sample surface while a signal from secondary or back-scattered electrons is recorded. SEM is used to image an area of the sample with nanometric resolution, and also to measure its composition, crystallographic phase distribution and local texture.
AFM is a surface sensitive technique permitting to obtain a microscopic image of the topography of a material surface and certain properties (like friction force, magnetization properties…). Typical lateral image sizes are within a range of only a few Nanometers to several Micrometers, and height changes of less than a Nanometer.
XAS is sensitive to the local bonding environment of the atom absorbing the X-rays, providing information on oxidation states, local orbital symmetry, molecular orientation and chemically selective density of states. It is widely used in molecular and condensed matter physics, material science, engineering, chemistry, earth science and biology.
By SIMS, samples are bombarded; sputtered and ionized atoms accelerate towards a mass spectrometer, providing surface mass spectra, images with lateral resolution in the 0.1 to 10 µm range and depth profiles with depth resolution in the 1 to 10 nm range. SIMS can be quantitative up to ppb sensitivity when reference samples are used.
Scanning Transmission X-Ray Microscopy (STXM) is a non-invasive x-ray microscopy technique that enables the acquisition of images with elemental, chemical, and magnetic sensitivity. Typical STXM images exhibit a spatial resolution on the order of 10-20 nm, depending on the zone plate employed to focus the x-rays, and a typical lateral image size