Outcomes

the latest outcomes

Publications view all
DAMDID/RCDL 2016, 706, 248-262 (2017)
Metadata for Experiments in Nanoscience Foundries
Read Abstract
Metadata is a key aspect of data management. This paper describes the work of NFFA-EUROPE project on the design of a metadata standard for nanoscience, with a focus on data lifecycle and the needs of data practitioners who manage data resulted from nanoscience experiments. The methodology and the resulting high-level metadata model are presented. The paper explains and illustrates the principles of metadata design for data-intensive research. This is value to data management practitioners in all branches of research and technology that imply a so-called “visitor science” model where multiple researchers apply for a share of a certain resource on large facilities (instruments).
Link to publication
Acta Biomaterialia 51, 21–52 (2017)
Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography
Read Abstract
Unlike other tissue types, like epithelial tissue, which consist of cells with a much more homogeneous structure and function, the nervous tissue spans in a complex multilayer environment whose topographical features display a large spectrum of morphologies and size scales. Traditional cell cultures, which are based on two-dimensional cell-adhesive culture dishes or coverslips, are lacking topographical cues and mainly simulate the biochemical microenvironment of the cells. With the emergence of micro- and nano-fabrication techniques new types of cell culture platforms are developed, where the effect of various topographical cues on cellular morphology, proliferation and differentiation can be studied. Different approaches (regarding the material, fabrication technique, topographical characteristics, etc.) have been implemented. The present review paper aims at reviewing the existing body of literature on the use of artificial micro- and nano-topographical features to control neuronal and neuroglial cells’ morphology, outgrowth and neural network topology. The cell responses–from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized.
Link to publication
Microelectron. Eng. 176, 75 (2017)
Fabrication of diamond diffraction gratings for experiments with intense hard x-rays
Read Abstract
The demands on optical components to tolerate high radiation dose and manipulate hard x-ray beams that can fit the experiment requirements, are constantly increasing due to the advancements in the available x-ray sources. Here we have successfully fabricated the transmission type gratings using diamond, with structure sizes ranging from few tens of nanometres up to micrometres, and aspect ratio of up to 20. The efficiencies of the gratings were measured over a wide range of photon energies and their radiation tolerance was confirmed using the most intense x-ray source in the world. The fidelity of these grating structures was confirmed by the quality of the measured experimental results.
Link to publication
Deliverables view all
WP1 - Management
D1.3 - Setup and implementation of the TA and evaluation procedures
Read Abstract
NFFA-Europe offers to European and Third Country1 scientists from both academia and industry the possibility to carry out comprehensive projects for multidisciplinary research at the nanoscale. Activities are performed in six different types of Installations: - Lithography and nano-patterning (Litho) - Growth and synthesis (Growth) - Theory and Simulation (Theory) - Structural and Morphological nano-characterisation (SM Charact.) - Electronic and Chemical nano-characterisation (EC Charact.) - Magnetic, Optical and Electric nano-characterisation (ME Charact.) Each Installation includes laboratories located in different NFFA-EU sites; furthermore, when needed, limited2 access to co-located Large-Scale Facilities for Fine Analysis is offered as part of the access to Litho, or SM, EC or ME nano-characterisation. NFFA-Europe proposals necessarily include access to more than one type of Installation (e.g. Litho and Growth, Growth and Theory, SM Charact. and EC Charact., etc.) and cannot be limited to Fine Analysis only. Whenever possible access will be granted in a single NFFA-Europe site for all research steps. Access to more than one site for a given proposal will be considered only when technically or scientifically justified.
Download full report
WP1 - Management
D1.1 - Internal test of NFFA-Europe Website
Read Abstract
This deliverable describes the results achieved within task 1.5 “Communication”, and is also connected to the dissemination purposes of the project (WP11). The work done aimed at setting up the main information and functionalities of the website as a Single Entry Point (SEP) to find out about the project and access the offer of tools made available through NFFA-Europe research infrastructure.
Download full report
WP11 - Networking activities for NFFA user community impact and growth
D11.2 - Draft metadata standard for nanoscience data
Read Abstract
This document contains the NFFA Deliverable D11.2 “Draft metadata standard for nanoscience data” due in M6. It describes the approach, the relevant information management practices, standards and recommendations taken into account, as well as empirical research done by NFFA JRA3 for the purpose of metadata design, and then suggests a draft recommendation for NFFA metadata model. Having a common and well-defined metadata model is essential for human-to-human, human-to-machine and machine-to-machine interoperability in NFFA. Such a model will support the development of Information and Data management Repository Platform (IDRP) and will contribute to structured business analysis across the project. In return, the model will get further inputs from the continuing IT architecture design and business analysis. In addition to the NA activities, the deliverable has been discussed and validated through a number of conference calls and electronic communication in JRA3, as well as in the course of a dedicated face-to-face meeting in Abingdon, UK, in February 2016. The metadata model here proposed will be further validated, updated and detailed through the NFFA project activities within and beyond JRA3. It will be then finalised in D11.14 “Final metadata standard for nanoscience data” in M30. Approach
Download full report