Ref. Ares(2024)6169641 - 31/08/2024

nffa.eu PILOT 2021 2026

DELIVERABLE REPORT

WP15 JA5 - Correlative Nano-Spectroscopy and Nano-Diffraction

D15.5

Implementation of user offer "correlative platform"

Due date

This initiative has received funding from the EU's H2020 framework program for research and innovation under grant agreement n. 101007417, NFFA-Europe Pilot Project

PROJECT DETAILS

PROJECT ACRONYM	PROJECT TITLE Nanoscience Foundries and Fine Analysis - Europe PILOT
GRANT AGREEMENT NO:	FUNDING SCHEME
101007417	RIA - Research and Innovation action
START DATE	
01/03/2021	

WORK PACKAGE	DETAILS	
WORK PACKAGE ID	WORK PACKAGE TITLE	
WORK PACKAGE ID WORK PACKAGE TITLE NP15 JA5-Correlative Nano-Spectroscopy and Nano-Diffraction		
WORK PACKAGE LEADER		
Dr. Thomas F. Keller	(DESY)	

DELIVERABLE DETAILS

DELIVERABLE ID	DELIVERABLE TITLE
D15.5	Implementation of user offer "correlative platform"

DELIVERABLE DESCRIPTION

In this deliverable report 15.5, we introduce the "SMART" software platform, designed to provide an image registration-based tool for nanoparticle identification and re-localization. This advanced tool integrates Discrete Fourier Transform (DFT) algorithms with real-time camera streaming for continuous monitoring, and incorporates precise image registration and position refinement features. Tested at the X-ray beamline P06 at PETRA III, DESY, SMART aims to improve the interoperability between microscopy, spectroscopy, and imaging systems across lab-based and X-ray beamline facilities for users, and to permit correlative work flows.

DUE DATE

ACTUAL SUBMISSION DATE

M42 31/08/2024

31/08/2024

AUTHORS

Dr Jagrati Dwivedi (DESY) Dr. Canrong Qiu (DESY) Dr. Jan Garrevoet (DESY) Dr. Gerald Falkenberg (DESY) Dr. Stijn Van Malderen (DESY) Prof. Andreas Stierle (DESY) Dr. Alexander Suarez Dr. Hiram Castillo-Michel (ESRF) Dr. Rachid Belkhou (SOLEIL) Dr. Thomas F. Keller (DESY)

PERSON RESPONSIBLE FOR THE DELIVERABLE

Dr. Thomas F. Keller

NATURE

\boxtimes	R -	Report
-------------	-----	--------

- P Prototype
- DEC Websites, Patent filing, Press & media actions, Videos, etc
- □ 0 Other

DISSEMINATION LEVEL

- x P Public
 pP Restricted to other programme participants & EC: (Specify)
 RE Restricted to a group (Specify)
- □ CO Confidential, only for members of the consortium

REPORT DETAILS

ACTUAL SI 31/08/20	JBMISSION DATE		NUMBER OF PAGES	
FOR MORE	INFO PLEASE CONT	ACT		
Dr. Thon DESY D-22607 Germany	nas F. Keller Hamburg		email: <u>Thomas.Ke</u>	<u>ller@DESY.de</u>
VERSION	DATE	AUTHOR(S)	DESCRIPTION / REASON FOR MODIFICATION	STATUS
1	20/08/2024	Dr. Jagrati Dwivedi	First draft	Draft
2	26/08/2024	Dr. Thomas F. Keller	Revision and submission for internal approval	Version submitted for internal approval
				Choose an item.
				Choose an item.
				Choose an item.
				Choose an item.
				Choose an item.

CONTENTS

Introduction	6
SMART: A correlative platform	7
Implementation and application of SMART	7
Sample preparation as a reference for the correlative platform	7
Beamline control	10
Image registration using DFT	11
Particles auto detection	14
Open source information	15
Developments at contributing institutions	16
Conclusion and outlook	18
Acknowledgements	18

INTRODUCTION

The work package 15 - Joint Action JA5 - Correlative Nano-Spectroscopy and Nano-Diffraction aims to develop, implement and test a correlative user platform connecting dedicated focused X-ray beamlines at analytical large-scale facilities (ALSFs) to complementary lab-based nanoscience instruments such as Scanning-Force (AFM) and Scanning Electron (SEM) Microscopy. One of the objectives of this correlative platform is to link the microscopy, spectroscopy and imaging infrastructures already in place at the nanoscience foundries and at the X-ray beamlines and to ensure the mutual compatibility and interoperability. The deliverable report D15.5, Implementation of user offer "correlative platform", describes a software-based correlative work flow permitting to conduct correlative experiments, that is now available as offer to nanoscience users, e.g., transnational users of the European NFFA Pilot access program.

To enable a correlative one-to-one identification of region of interests (ROIs), the Python- based Smart Multi-Application Running Toolkit (SMART) was developed at DESY. This software provides a tool for automated particle identification and re-localization of nanoscale objects after pre-selection with lab-based microscopes and sample transfer to X-ray beamlines at ALSFs. As a reference experiment we describe the correlative workflow utilizing the SMART software platform.

To document the implementation of the SMART software at the X-ray beamlines, a test sample with CeO_2 nanocubes with average particle size of 50 nm on SiN membrane was prepared by drop casting. This method enabled a precise placement and optimal sample preparation, ensuring sufficient isolation of individual particles. Isolation of nano-objects is essential to ensure that signals are collected from a single nanoparticle at a time.

Previously, NFFA deliverables and milestone reports introduced a MATLAB-scripted nano-positioning software designed for the transfer and positioning of nano-objects. This software primarily relied on high-contrast, hierarchically arranged markers created through the ion- /electron beam-induced deposition (IBID/EBID) process, as detailed by Abuin et al. (ACS Appl. Nano Mater. 2019, 2, 8, 4818–4824). This nano-positioning software is part of the NFFA user offer "Advanced Nano-Object Transfer and Positioning protocol".

Within NFFA Pilot, an image registration option was introduced with a Python-based Graphical User Interface (GUI), as described in the deliverable Report D15.2., which enabled manual image registration using fiducial markers. This tool is particularly important as it permits to create two sets of alignment marks on the transferred and reference images with the same feature.

In the current deliverable report, the advanced software tool "SMART", specifically designed for an automated identification and re-localization of a statistically relevant number of nano-objects, is described. As a reference, the application of SMART is documented for the chemical composition analysis of CeO_2 nanocubes within a correlative experiment.

The SMART software utilizes advanced algorithms, including the Discrete Fourier Transform (DFT) image registration tool to permit and enhance the accuracy of nanoparticle identification and tracking. One of the key features of SMART is its integration of a real-time camera stream, which allows for a continuous online monitoring of the nanoparticle behaviour. Additionally, the software includes powerful image registration and position refinement functions, ensuring precise alignment and positioning of nanoparticles during experiments. The correlative work flow was tested at beamline P06, PETRA III, DESY and the microscopes at the DESY NanoLab in the framework of several experiments.

SMART: A correlative platform

Building on our previous work, we have upgraded the Python GUI script "Image Registration Tool" into the more advanced software Smart Multi-purpose Application Running Toolkit SMART. This upgraded toolkit is highly customizable and user-friendly, now featuring integrated beamline control and automated particle detection capabilities. The development of the correlative work flow is a collaborative effort between PETRA III, DESY and NFFA-Pilot. SMART is designed to offer a comprehensive correlative platform that supports various microscopic as well as spectroscopic modalities, significantly enhancing the efficiency and precision of experiments. Figure 1 presents a screenshot of the SMART software interface, highlighting its user-friendly design and advanced functionalities. Through SMART, users can achieve higher accuracy in particle detection and positioning, facilitating more detailed and reliable experimental outcomes.

Figure 1: Screen shot of the SMART software interface.

Implementation and application of SMART

Sample preparation as a reference for the correlative platform

As a reference sample to document the implementation, functionalities and capabilities of the SMART software at PETRA III and the DESY NanoLab, CeO_2 cube powder was dispersed by drop-casting a solution of 10% ethanol in ultra-pure water on a SiN membrane substrate. Drop-casting ensured an even distribution of the nanoscale CeO_2 particles with a nominal average particle size of 50 nm across the substrate surface. Following this recipe enabled a precise placement and optimal preparation of the samples, ensuring the existence of isolated individual particles. Figure 2(a) represents the preparation method of CeO_2 nanocubes on SiN membrane, and they are clearly visible in the high-resolution SEM image in Figure 2(b).

Figure 2: (a) Sample preparation. SiN membrane with drop casted CeO₂ nanocubes on a microscope slide, covered by a Petri dish. (b) SEM of isolated and agglomerated nanocubes.

We employed Pt markers using ion- and electron-beam induced deposition (IBID and EBID) techniques as part of the NFFA Nano-Object Transfer & Positioning offer to accurately relocate regions of interest across different imaging modalities. Figure 3(a) presents a high-resolution SEM image that includes Pt markers and clearly shows clusters of CeO₂ nanocubes, with a scale bar of 20 µm. Utilizing a marker-based correlative imaging approach, the region identified in the SEM was precisely relocated for X-ray fluorescence (XRF) measurements at the P06 beamline at PETRA III, DESY. This allowed us to obtain spatially resolved elemental distribution and composition of the sample, with an estimated spot size of 100 x 100 nm² at an energy of 12 keV. The XRF energy survey spectrum, shown in Figure 4(a), confirms the presence of cerium (Ce) and platinum (Pt) through distinct peaks corresponding to their characteristic X-ray energies. Furthermore, the XRF images in Figure 4(b), recorded at the L_{α} -edge energies for Pt and Ce over a scan area of $120 \ \mu\text{m} \times 120 \ \mu\text{m}$, reveal the precise spatial distribution of these elements within the sample. The Pt L_{α} map highlights regions with high Pt concentration, particularly on the marker areas, while the Ce L_{α} image shows the distribution of Ce within the CeO₂ clusters, indicating areas of enrichment or depletion for both elements. Furthermore, the SEM-based energy dispersive X-ray spectroscopy (EDX) mapping of Pt and Ce confirm the distribution of Pt and Ce within the sample. The scan size of the map is 80 µm x 80 µm and were taken with a resolution of 4096 pixels at an electron energy of 10 keV. The resulting maps provide a colour-coded representation, where each colour corresponds to a specific element. The intensity of the colour reflects the relative concentration of that element, with brighter areas indicating higher concentrations. For instance, in the provided maps (Figure 3(b)), green represents Pt in the upper image, whereas yellow represents the Ce in the lower image. The EDX spectra, shown in Figure 3(c, d, e), were extracted from the Pt marker, SiN membrane, and CeO₂ cluster regions as marked in Ce map of Figure 3(b). The Ce signal is distinctly present only in regions with CeO₂ particles or clusters, while the Pt signal is only seen in the marker region. Note, that the Pt markers remain visible in the Ce EDX map due to the automated, non-optimized fit of the EDX spectra that also lead to an enhanced Ce background. Moreover, the resolution of specific imaging modalities is in general not identical and needs to be adjusted by the SMART software.

Figure 3: (a) SEM image showing CeO₂ nanocubes with a Pt guiding marker. (b) High-resolution energy dispersive X-ray (EDX) mapping of Pt and Ce at the M α edge. The EDX spectra belong to the (c) Pt marker, (d) SiN membrane, and (e) CeO₂ cluster region as marked in the Ce-M α map.

Figure 4: ALSF X-ray experiment at beamline P06 at PETRA III at DESY. (a) X-ray fluorescence spectra and (b) X-ray fluorescence scanning images of the Pt-L and Ce-L edge collected from the identical region during a single scan.

Beamline control

SMART comes with a PyQt-based GUI, a Python-plugin of a platform independent graphical user interface toolkit, which can be configured to monitor the whole beamline in terms of motor positions, detector status, scan status and even more. The SMART software is designed to map the relationship between the viewport, i.e. the field of view for the current imaging modality, and the motor stage coordinate systems with high precision. This capability is essential for seamless integration of different imaging modalities. The process begins with capturing a microscopy image, such as AFM or SEM, mounting the sample on the sample stage at the X-ray beamline, and then acquiring a live optical microscopy image with the inline optical microscope for a course alignment. After loading the AFM or SEM image, the live image is registered to the latter using Discrete Fourier Transform (DFT) techniques, ensuring accurate alignment of features across the different images. For registration, a region of interest (ROI) is selected on the AFM image, for example around a marker region, to obtain its viewport coordinates. A corresponding feature is then identified in the live image, and its viewport coordinates are recorded. The SMART software then converts these viewport coordinates into motor stage coordinates, enabling precise positioning for subsequent scans or the creation of a macro. The strategy used for mapping the position relationships between the viewport and motor stage coordinate system is illustrated in Figure 5. In a second iteration, the alignment may be refined by using a higher resolution SEM and AFM image and relocalisation features visible in X-ray scanning or full-field images, taken with one of several possible contrasts, like e.g., X-ray absorption, XRF, Bragg, etc.) for a fine alignment.

Figure 5: Sketch of the methodology to implement the mapping relationships between viewport and motor stage coordinate systems in the SMART software.

Additionally, the SMART software includes a camera stage control (see Figure 6), which allows users to adjust the imaging stage in real-time to fine-tune the alignment and focus on the sample. The software also features a scan macro generator option (see Figure 6), which simplifies the process of defining and executing scan sequences. This option allows users to create customized scan paths

based on the mapped coordinates, ensuring that the X-ray beam or other analytical tools target specific areas of interest with precision. By automating these processes, the SMART software significantly enhances the efficiency and accuracy of a nanoscale analysis, making it a powerful tool for correlative microscopy and spectroscopy.

zoom pos.(um)	control		Low	Midium	High
Sample stage					
sample stage					,
sampleY					
eamole7					
samplez					
Scan macro ge	nerator				
macro name	mesh	hor stage name	samly	ver stage name	samlz
step size(um)	(2,2)	horizontal steps.	10	ertical steps	
🗆 use step siz	e to cal steps	exposure time	0.1	sec.	save roi_xy
full scan macro	name				
queue section (name	queue1	queue name	queue1	append
ScanViewer -					

Figure 6: Screenshot of beamline (BL) control window in the SMART software.

Image registration using DFT

In the previous deliverable report D15.2, we thoroughly discussed the various algorithms and features utilized in the Python script to functionalize this program, including the import module, geometry, and more. Additionally, we employed two sets of manually generated lines using the "fiducial marker" for image registration. Now, the SMART software, provides an advanced automated feature analysis implementation with a high level of precision, which can be integrated at selected focused X-ray based beamlines. Notably, two new features have been included in the SMART software: DFT - Discrete Fourier Transform - registration and Automated Particle Detection.

Figure 7 provides a step-by-step illustration of the DFT registration process. Users can upload images from different imaging modalities with appropriate resolution via the "Import" menu located at the top left corner of the software (see Figure 7-1). They can also adjust dimensions and drag the images into the workspace using the "geometry" menu (highlighted in yellow). The DFT registration tool allows the selection of two corresponding features on both images. One image is selected as the reference, while the other is referred to as the target image (Figure 7-2, 3). Users can then draw a box (see the green box in Figure 7-4) around corresponding features on both, the transferred and the reference images and save the selected regions using the "select feature" option indicated by the red circle in Figure 7-4. By clicking "register", the software generates a new frame with the registered images. The green region in Figure 7-5 highlights the registered area. In this example, we utilized two SEM images of CeO₂ nanocubes on a SiN membrane with different spatial resolutions. Similarly, SEM and XRF images were registered using the procedure described above, as shown in Figure 8.

Image: Control Specify Image: Control	<mark>\$⊧ SMART</mark> File View Tools Help			- a x
The server is brance intercent inte	I 📰 I Load Perspectives, 🚵 I 🗙 📓 II —	1		
Image: Internet into the second se	Camer Stream Sequencer scan queue enline monitor monitor synoptic viewer ImageReg	BLCorr	al Spack ImgReg Console	
Image: sector in the sector	T Import Remove	00	eometry Fiducial DFT Particle	
Image: sector definition of the sector and the sec	Image navigation << <<		nment and Positioning Alignment Marks	
and a state of the state o	mode selection gesmetry mode fiducial mode DFT n	node O particle mode P	ixel dimensions [µm] 0.55	0.55 [1.0
Produce we king to the first of			itline (µm) [49730.0,50569.1]	[49919 8,50522 4] [-0 5,0 5]
Image: Second Decoder Control Speck ImgReg Console Image: Second Decoder Control Speck ImgReg Control Speck Img		P	ixel count 1536	1103 [1
BECOntrol Spock ImgReg Console Divertion as a period of the state o			Apply	Satvé rését
BLCentrel Speck ImpReg Console Determined Sector Development Sector Data II in the Arks Prevent sector and Postcoring Alignment and Postcoring Alignment Marks Prevent sector point (pixel unit) File Alignment and Postcoring Alignment field (deg) Outline (µm) (49300.50659.1) (Higher South Sector Data II in the Arks Prival dimensions (µm) 0.65 10 Rotation angle (deg) Apply Save reset x positive	200	×		0,0 🕀 Tweak
BLControl Spock ImgReg Consol O Geometry Fiducial DFT Particle Fixed dimensions [µm] 0.55 0.55 1.0 center point (pixel unit) 505 1.0 center point (pixel unit) 536 1.1 1.33 1.36 1.33 Rotation angle (deg) Apply Save Y wask				
Image: State of the state			1	
Image: Source of source o	and the second sec			
BEControl Spock ImgReg Console O Geometry Fiducial DFT Particle Figurent and Positioning Alignment Marks Pixel dimensions jumj 0.55 Center point (pixel unit) 50149.6 Outline jumj 49919.8,50522.4] Pixel count 1536 P	100 -			
BLControl Spock IngReg Console Decent poer spot Corea Creat poer control to the fill of the fill				
BLControl Spock ImgReg Console Difference	³⁸ Kõine 100 45 in 1383 42 jn 13 in [2] 39 kõine astrinost			
BLControl Spock ImgReg Console BLControl Spock ImgReg Console IO Geometry Fiducial DFT Paticle Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.0 0.0 outline [µm] [49730.0.50569.1] Pixel count 1536 Rotation angle (deg) 0 x positive 0.0		· ·		
BLControl Spock ImgReg Console BLControl Spock IngReg Console IO Geometry Fiducial DFT Particle Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [49730.50569.1] [49919.8,50522.4] [0.5.0.5] Pixel count 1536 1103 1 Rotation angle (deg) Apply Save reset x positive 0.0 Tweak				
BLControl Speck ImgReg Console Despect cares P(ct Occur chargedee avenues ave				
BLControl Spock ImgReg Console BLControl Spock ImgReg Console D Germetry Fiducial DFT Particle Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [49730.0.50569.1] [49919.8.50522.4] [-0.5.05] Pixel count 1536 1103 1 Rotation angle (deg) 0 Apply Save reset x positive 0.0 Tweak				
BLControl Spock ImgReg Console Demonstration of the entropy Fiducial DFT Particle Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [49730.0.50569.1] [49919.8.50522.4] [-0.5,0.5] Pixel count 1536 1103 1 Rotation angle (deg) 0 Apply Save reset x positive 0.0 Tweak		4		
BLControl Spock ImgReg Console Were wort to artisty 05 0700 as 0200012000, 500 Di Geometry Fiducial DFT Particle Alignment and Positioning Alignment Marks Pixel dimensions [um] 0.55 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [um] [49730.0.50569.1] [49919.8.50522.4] [-0.5.0.5] Pixel count 1536 1103 1 Pixel count 1536 1103 1 Rotation angle (deg) 0 Apply Save reset x positive 0.0 Tweak	- • · · ·	· · · · · · · · · · · · · · · · · · ·		
BLControl Spock ImgReg Console Die Geometry Fiducial DFT Particle Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.655 0.0 outline [µm] [49730.0.50569.1] Pixel dimensions [µm] 0.55 0.0 outline [µm] [49730.0.50569.1] Pixel count 1536 1103 Rotation angle (deg) Apply Save reset x positive		Sector Prints		
BLControl Spock ImgRag Console BLControl Spock IngRag Console BLCONT IngRag Console B				
ID Geometry Fiducial DFT Particle Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [49730.0.60569.1] [49919.8.50522.4] [-0.5.0.5] Pixel count 1536 1103 1 Retation angle (deg) 0	BLControl Spock ImgReg Co	onsole		
Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [43730.0.50569.1] [49919.8.50522.4] [-0.5.0.5] Pixel count 1536 1103 1 Rotation angle (deg) 0	IO Geometry Eiducial DET	Daticle		J
Alignment and Positioning Alignment Marks Pixel dimensions [µm] 0.55 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [49730.0.50569.1] [49919.8.50522.4] [-0.5.0.5] Pixel count 1536 1103 1 Rotation angle (deg) 0	viewport coords/PyCit5.CitCore.QPointf(50660.00065128901, 5015	1 atticle		🗖
Pixel dimensions [µm] 0.55 1.0 center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [49730.0.50569.1] [49919.8.50522.4] [-0.5,0.5] Pixel count 1536 1103 1 Rotation angle (deg) 0	Alignment and Positioning			
center point (pixel unit) 50149.6 50221.1 0.0 outline [µm] [49730.0.60569.1] [49919.8.50522.4] [-0.5.0.5] Pixel count 1536 1103 1 Rotation angle (deg) 0	Pixel dimensions [µm]	0.55	0.55	1.0
outline [µm] [49730.0,50569.1] [49919.8,50522.4] [-0.5,0.5] Pixel count 1536 1103 1 Rotation angle (deg) 0	center point (pixel unit)	50149.6	50221.1	0.0
Pixel count 1536 1103 1 Rotation angle (deg) 0 Apply Save reset x positive 0.0 Tweak	outline [µm]	[49730.0,50569.1]	[49919.8,50522.4]	[-0.5,0.5]
Rotation angle (deg) 0 Apply Save x positive 0.0 Tweak	Pixel count	1536	1103) [1]
Apply Save reset x positive 0.0 Tweak	Rotation angle (deg)			
x - positive - 0,0 Tweak		Apply	Save	reset
	× ~	positive ~	0,0	Tweak

Figure 7: to be continued

C SANKE -					
File view Tools Help					
l 🗄 I teal Perpetives, 🚵 I 🗙 🖡 I	-				
Connectifient Searces Statement (note name) (note name) Support (Note Name)	IO Geometry Attention: Th algorithm to	Fiducial DFT Particle e reference image must contain the target image for th function properly.	he		
20 -	Target	D:/Experimetal results/NFFA test sample 20.03.2024	at P06/For	img reg/CeO2-cubes_on_SiN_A_15.tif	+ select feature
	Reference	D:/Experimetal results/NFFA test sample 20.03.2024	at P06/For	img reg/CeO2-cubes_on_SiN_A_16.tif	+ select feature
	DFT pars				
	numiter	٥	order		register
	filter_pcorr		exponent	inf	move
	DFT registra	ation results			

Figure 7: (1-5) Screenshots of the various steps of the DFT image registration process using two different resolution SEM images that users have to follow while using this software.

Figure 8: (a) SEM image, (b) image-registered XRF images. (c) SEM/XRF overlay using the SMART software. The blue frame indicates the common image region.

Particles auto detection

The SMART software also integrates a precision Trackpy algorithm for the identification and localization of isolated nanoparticles, enhancing its ability to identify and track particles in 2D and 3D with high resolution. This functionality is crucial for the analysis of a statistically relevant number of isolated nano-objects. It also requires sample preparation protocols, see., e.g., the deliverable report D15.3, fabrication of nanoparticle pattern templates, to ensure a sufficient nanoparticle isolation. By these means it can be ensured that the footprint of the focused X-ray beam, typically ranging from tens of nanometres to several micrometres and influenced by factors such as the X-ray energy and the sample's tilt angle. illuminates only single nanoparticles. Then, data could be collected from single nanoparticles only, a process that so far requires lengthy lateral scans and manual identification during data analysis. By automating nanoparticle localization, the SMART software could reduce the time needed for future X-ray analysis by focusing only on pre-determined nanoparticle sites. Overall, the particle tracking capability permits to achieve one-to-one structure-property correlations from ALSF X-ray beamlines and microscopes at Nano labs. Figure 9 demonstrates a screenshot of the particle tracking window.

The particle tracking window offers several key features to help identify and analyse particles. One can set the diameter in pixels to estimate feature sizes within work frame. The size must be an odd integer. The software also allows to adjust the "mass" parameter and use the "invert" option to handle images with dark features. The threshold setting helps in differentiating actual particles from noise by evaluating their total brightness. Additionally, one can specify the minimum mass to filter out unwanted particles. The results are displayed both as annotated particles on the image and in a tabular format with details such as pixel coordinates and size etc. as shown in Figure 10.

BLControl Spock Img	gReg Console				
IO Geometry Fiduo	cial DFT Particle				
Particle Tracking	9				
Diameter (pixl)	11	minMass	20	maxSize	111
invert	True	noise_size	2,00	threshold	11
		Trac	ck method [locate_brightfield	d_ring 👻 Tra	ack Annotate SaveSettings

Figure 9: Screenshot of particle tracking window within the SMART software.

Particle Tracking		10	Geometry	Fiducial	DFT Pa	irticle	BLCont	rol Cons	ole		
Dammler (pol) 31 mmMas 1000 max3:20 1110 invert Tue noise_sta 300 threshold 100. Tue noise_sta 300 threshold 100. Tax8: Sta Statistic Particle Tracking Result Tue noise_sta 300 threshold 100. Tue noise_sta 100.5 147.40 10 0.2 56.4 52.510 0.6 1 52.4 100.5 1167.8 81.0 0.2 42.6 4.95.0 0.5 2 64.6 67.7 117.1 151.9 173.8 100.0 2 47.5 4.228.0 0.5 2 64.6 104.8 101.5 10.0 2 47.5 4.228.0 0.5 0.5 4 115 101.8 102.8 100.0 1.4 10.0 2.66.0 0.4 1 12.4 100.5 102.0 1.66.0 2.60.0 0.5 0.1 1 11.1 15.2 153.1 10.0 1.65.0 0.2 <		Particle Tracking									
Invert Tue nose)iameter (p	pixl) 3	1	mir	Mass	100.0	m	axSize	111.0
V X IDS IDS <thids< th=""> <thids< th=""> <thids< th=""></thids<></thids<></thids<>			nvert	Tr	ue	noi	se_size	3,00	th th	reshold	10.0
V X Mass MAS MASS MA									Track	Annotate	SaveSettings
y x nass size ecc signal raw_mass epp 0 496 657 1174 9 0 2 56.6 35261.0 0.5 1 52.4 100.5 1667.8 8.1 0.3 55.0 £1435.0 0.7 2 64.6 328.4 100.5 1667.8 8.1 0.3 55.0 £1435.0 0.5 3 71.1 1619 1373.6 10.0 0.2 47.5 4225.4 0.5 4 915 1048 6167.7 7.7 1 50.0 2508.0 0.4 5 101.1 152.2 1353.6 15 0.2 50.6 2657.0 0.4 6 118 70.0 1484.6 66 0.2 55.0 0.5 0.5 7 119.0 432.5 17531.4 9.0 0.2 50.0 2508.0 0.4 10 166 66.8 1644.7 56 0.1 41.3 299.0 0.4 11 147.4		Pa	rticle Tracl	king Res	ults						
0 46 67 1474 90 02 305 32810 0 1 524 1005 1467 81 0.3 550 61435.0 0.7 2 64.6 264 1005 1474 90 0.2 625 4360.0 0.5 3 71.1 161 13743 10.0 0.2 47.5 4224.0 0.5 4 915 104.8 1917.7 97.0 0.1 600 2003.0 0.4 6 1115 520 10335 5.5 0.5 0.5 0.5 0.5 7 119 422.5 17371 490.0 0.2 600 37818.0 0.5 10 132 1324 140.0 115 522.0 100 3180.0 0.5 11 147.4 497.1 1690.2 24.0 0.5 3180.0 0.5 12 152 177.1 1955.8 102 11 413.0 2920.0 0.4 10 136.0 168.1 1684.7<			v 🗸	• x				signal	raw mas		ep
1 524 105 11673 81 0.3 50.0 61435.0 0.7 2 646 264 17005 94 02 625 4350.0 0.5 3 71.1 1619 1373.6 10.0 0.2 47.5 42264.0 0.5 4 915 1048 1817.7 37.0 0.1 50.0 2083.0 0.4 5 1011 55.2 1333.5 9.5 0.2 50.6 2057.4 0.4 6 1118 370.0 144.46 85.0 0.2 57.5 46125.0 0.5 7 119.0 432.5 17531.4 9.0 0.2 60.0 37818.0 0.5 8 126 137.7 1255 102.0 10 16.9 316.0 0.4 10 187.0 254.0 108.0 118.7 128.0 10.0 14.3 2822.0 0.4 11 147.4 497.7 1699.2 4.0 2.5 5.5 3964.0 0.5 12 1	<u>`</u>		49.6	65.7	14774.0	9.0	0.2	50.6	-35261.0	0.5	
2 64 3264 1705 94 02 62.5 4860.0 0.5 3 71.1 161.9 1374.5 10.0 0.2 47.5 42254.0 0.5 4 915 104.8 16177 9.7 0.1 50.0 2003.0 0.4 5 101.1 65.2 133.5 9.5 0.2 50.6 2057.4 0.5 6 111.8 970 145.4 8 5 0.2 60.0 3781.0 0.5 7 190.4225 1757.1 90.0 2.2 80.0 3781.0 0.5 10 132.6 137.7 1955.9 10.0 1.1 50.0 2660.80 0.4 10 136.0 864.7 190.0 1.0 1.0 1.0 202.0 0.4 11 147.4 489.7 1689.2 9.4 0.2 55.0 364.0 0.5 12 151.5 152.6 164.7 19.2 1.4 35.0 2.5 364.0 0.5 13 154.	Star Park		52.4	100.5	11667.8	8.1	0.3	55.0	-61435.0	0.7	-
3 71.1 161.9 137.4 10.0 0.2 4.5 422.4.0 0.4 4 91.5 104.8 16187 7 0 10 0.0 2.0 0.0 2.0 0.4 6 11.1 52.0 133.3 5 0.2 0.0 2.0 0.4 0.5 7 190 42.5 173.1 10.0 1.2 10.0 0.2 0.0 2.0 0.4 0.4 6 11.8 2.0 12.0 <			64.6	326.4	17005.5	9.4	0.2	62.5	-43650.0	0.5	
4 9.15 10.48 1687 9.7 0.1 0.00 2003.00 0.4 5 10.1 5.2 1353.3 5.0 0.2 0.00 2074.00 0.4 6 118 320 145.4 8.0 0.2 0.0 2074.00 0.4 7 19.0 42.5 1731.4 0.0 0.2 0.0 3781.00 0.5 8 12.6 17.7 19.0 42.5 1731.4 0.0 0.1 0.1 0.10 0.1			71.1	161.9	13743.6	10.0	0.2	47.5	-42254.0	0.5	
5 101.1 52 1353.3 9.5 0.2 6.05 -2074.0 0.4 6 118 780 1464.6 8 0.2 5.0 -4612.0 0.5 7 190 432.5 1731.4 9.0 0.2 6.0 -3781.0 0.5 8 126 177 1955.5 10.2 0.1 6.0 -3781.0 0.4 9 187.7 254.5 2326.0 10.0 0.1 6.10 -3781.0 0.4 10 186.7 254.5 2326.0 10.0 0.1 6.10 -3781.0 0.4 11 147.4 487.7 1858.5 10.2 0.1 6.0 -3781.0 0.4 11 147.4 487.7 1659.2 14.0 11.0 11.0 0.1 6.1 -376.0 0.1 6.1 -376.0 0.1 6.1 0.1 6.1 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0			91.5	104.8	16187.7	9.7	0.1	50.0	-28083.0	0.4	
6 118 170 1464 8 0 2 5 46250 05 7 190 425 1731.4 90 0.2 60.0 3781.00 0.5 8 126 177 1955 102 0.1 61.0 316.00 0.4 9 187.3 25.4 2368.0 0.1 61.0 316.00 0.4 10 186.7 25.4 2368.0 0.1 61.0 316.00 0.4 10 186.7 25.4 2368.0 0.1 61.0 360.0 0.1 61.0 0.5 11 147.4 49.7 1699.2 9.4 0.2 6.8 4837.70 0.5 12 15.1 167.1 167.0 19.0 1.2 6.8 354.90 0.5 13 16.4 167.4 167.0 1.2 1.6 462.0 1.6 0.5 14 15.7 18.0 1.4 157.6 1.2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 <th>States and a state of the states</th> <th></th> <th>101.1</th> <th>55.2</th> <th>13533.5</th> <th>9.5</th> <th>0.2</th> <th>50.6</th> <th>-20574.0</th> <th>0.4</th> <th></th>	States and a state of the states		101.1	55.2	13533.5	9.5	0.2	50.6	-20574.0	0.4	
7 190 432 1731.4 9.0 0.2 6.0 -3781.0 0.5 8 12.6 137.7 1965.9 10.2 0.1 6.0 -660.00 04 9 116.7 325.4 2326.0 10.0 0.1 6.1 -3781.0 0.4 10 136.0 168.4 7.9 0.1 11.0 -311.0 0.4 11 147.4 489.7 1669.2 2.4 0.2 5.5 -3964.0 0.5 12 151.5 245.7 1492.1 8.9 0 0.2 6.8 4837.70 0.5 13 154.4 1574.4 1570.7 7.9 0.2 6.8 4545.0 0.5 14 157.4 1587.7 1287.7 1287.7 128.7 12.5 1			111.8	378.0	14544.6	8.5	0.2	57.5	-46125.0	0.5	
0 1			119.0	432.5	17531.4	9.0	0.2	60.0	-37818.0	0.5	
9 118.7 325.4 2326.0 10.0 0.1 6.19 -3116.0 0.4 10 136.0 168.0 168.4 7.00 0.1 1.1 2.322.00 0.4 11 147.4 480.7 1669.2 9.0 0.1 6.10 6.30 6.4 12 151.5 245.7 1492.1 8.0 0.1 5.0 483.770 0.5 13 154.4 157.0 7.3 0.2 6.8 4.84.7 0.5 14 153.0 164.1 157.0 7.3 0.2 6.8 4.84.70 0.5 151 152.1 168.7 152.7 1492.1 8.0 0.1 6.5 4.62.70 0.5 161 153.5 160.7 138.7 138.7 16.8 0.4 6.10 0.5 0.5 161 153.5 160.7 138.7 138.7 138.7 10.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5		8	123.6	137.7	19555.9	10.2	0.1	55.0	-26608.0	0.4	
10 130 160 164 190 1 13 282200 0.4 11 147.4 4807 16692 2 0.5 3964.0 0.5 12 1515 267.7 1492.1 8 0 1 5 3964.0 0.5 13 154.4 1570.7 130 0.2 6.8 48377.0 0.5 14 1530 314.4 1570.7 130 0.2 6.8 455.0 0.5 151 156.1 1867.7 1327.8 8.0 0.4 6.0 6.5 161 153.5 1687.7 1327.7 1328.7 8.0 0.4 6.0 6.5 161 153.5 1687.7 1327.7 1328.7 8.0 0.4 5.0 0.5 0.5 161 153.5 1694.7 143.7 10.6 0.2 10.3 3575.0 0.5 171 164.5 170.7 1043.7 1.6 0.4 6.5 3620.0 0.6 181 1617.7 1645.2			118.7	325.4	23268.0	10.0	0.1	61.9	-31160.0	0.4	
11 147.4 489.7 1669.2 9.4 0.2 5.5 3964.0 0.5 12 151.5 245.7 1492.1 8.9 0 1 5.6 48377.0 0.5 13 154.4 1570.7 130 0.2 5.8 -354.0 0.5 14 153.9 141.4 1570.7 9.3 0.2 6.8 -354.0 0.5 14 153.9 141.4 1570.7 130.7 3.0 0.4 5.0 4627.00 0.5 14 153.9 141.4 1570.7 1327.8 8.0 0.4 6.10 4650.0 0.5 151 156.1 156.7 1307.7 1327.8 8.0 0.4 5.0 4627.00 0.5 161 153.5 190.4 174.7 10.4 10.4 5.0 10.4 5.0 10.5 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 <t< th=""><th></th><th></th><th>136.0</th><th>96.8</th><th>16484.7</th><th>9.8</th><th>0.1</th><th>41.3</th><th>-28929.0</th><th>0.4</th><th></th></t<>			136.0	96.8	16484.7	9.8	0.1	41.3	-28929.0	0.4	
12 1515 2457 1421.6 8.9 0.1 5.6 48377.0 0.5 13 154.4 1570.7 1.3 0.2 5.8 .3545.0 0.5 14 1539 141.4 1570.7 1.3 0.2 6.8 .4547.0 0.5 14 1539 141.4 1576.7 1287.7			147.4	489.7	16699.2	9.4	0.2	57.5	-39644.0	0.5	
13 154.4 157.4 157.0 9.3 0.2 5.8 -3545.0 0.5 14 153.9 141.4 157.6 9.2 0.4 5.6 4627.0 0.5 15 156.1 188.77 132.7.8 8.8 0.4 6.1 4650.0 0.5 16 153.5 190.4 217.3 10.6 0.2 61.3 3575.0 0.5 17 169.4 52.5 2391.7 10.6 0.2 61.3 3524.0 0.4 18 161.7 305.6 1912.5 1.0 0.0 6.3 -2592.0 0.4 19 166.9 70.7 1043.1 7.0 0.2 61.9 3145.0 0.4 19 166.9 70.7 1043.1 7.0 0.2 61.9 3145.0 0.4 20 17.1 456.2 2456.4 10.0 0.4 55.0 0.6 21 19.2 15.4 152.7 7.0 0.3 6.3 -5650.0 0.6 22 21.4 121.7<			151.5	245.7	14921.6	8.9	0.1	55.6	-48377.0	0.5	
1 153 14 157 127 0 0 467.00 05 10 155 156.1 187.7 127.8 8.8 0.4 5.1 465.00 0.5 10 153 150.1 158.7 128.7 10.8 0.2 61.3 357.00 0.5 11 153 150.4 157.5 20.4 10.8 0.2 61.3 357.00 0.5 11 157.4 152.5 2317.0 10.6 0.2 61.3 357.00 0.4 12 161 153.5 1912.5 10.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		154.4	187.4	15790.7	9.3	0.2	58.8	-35459.0	0.5	
15 151 156 1887.7 1327.8 8.8 0.4 56.1 46950.0 0.5 16 153.5 304 2174.3 106 0.2 61.3 3575.0 0.5 17 169.4 52.5 23917.0 10.6 0.0 6.3 -2592.0 0.4 18 161.7 305.5 1972.5 19.7 0.2 61.9 -3145.00 0.4 19 166.9 70.7 1043.1 7.0 0.2 61.9 -3145.00 0.4 19 166.9 70.7 1043.1 8.4 0.4 5.5 -5368.20 0.6 20 179.1 452.2 2456.4 10.0 0.1 61.3 -1574.90 0.4 21 192.0 35.5 7112.2 7.9 0.3 46.3 -5655.00 0.6 22 201.4 121.7 2466.5 9 0.1 68.0 -3242.00 0.4	and the second	14	153.9	341.4	15178.6	9.2	0.4	55.6	-46273.0	0.5	
16 153 5 1304 2174 7 10 0.2 61.3 .3755.0 0.5 17 1694 52.3 2317.0 10.6 0.0 6.3 .2524.0 0.4 18 1617 305.5 19125 197.0 0.2 61.9 .3153.0 0.4 19 166.9 70.7 1043.1 8.4 0.4 5.5 .5362.0 0.6 20 1791 452.2 24564.2 10.0 0.1 61.3 .6174.00 0.4 21 192.0 35.5 7112.2 7.9 0.3 46.3 .5655.00 0.6 22 201.4 1321.7 24665.5 9 0.1 68.0 .3242.00 0.4			155.1	1887.7	13287.8	8.8	0.4	58.1	-46950.0	0.5	
17 1694 52.3 23917.0 10.6 0.0 56.3 -25924.0 0.4 18 1617 305.5 19125.1 9.7 0.2 619 -3145.0 0.4 19 166.9 70.7 10431.7 8.4 0.4 52.5 -53682.0 0.6 20 1791 445.2 24564.2 10.0 0.1 61.3 -1574.90 0.4 21 192.0 39.5 7112.2 7.9 0.3 46.3 -5656.0 0.6 22 201.4 1321.7 24665.5 9.9 0.1 68.0 -3242.0 0.4	40 mil 2		153.5	390.4	21743.7	10.6	0.2	61.3	-35755.0	0.5	
18 161.7 30.5 1912.5 19.7 0.2 61.9 -3145.00 0.4 19 166.9 70.7 10431.7 8.4 0.4 5.5 -5368.20 0.6 20 17.1 452.2 24564.2 10.0 0.1 61.3 -1574.90 0.4 21 192.0 39.5 7112.2 7.9 0.3 6.63 -5669.00 0.6 22 201.4 152.17 24564.5 9.0 0.1 61.8 -3242.00 0.4			169.4	525.3	23917.0	10.6	0.0	56.3	-25924.0	0.4	
19 166.9 70.7 1043.7 8.4 0.4 5.5 -53682.0 0.6 20 179.1 456.2 24564.2 10.0 0.1 61.3 -1574.90 0.4 21 192.0 35.5 7112.2 7.9 0.3 46.3 -56585.0 0.6 22 201.4 132.17 24566.5 9.9 0.1 68.0 -32422.0 0.4			161.7	305.5	19125.1	9.7	0.2	61.9	-31453.0	0.4	
20 179 1 445 2 24564 2 10.0 0.1 61.3 -15749.0 0.4 21 192.0 39.5 7112 2 7.9 0.3 46.3 -5659.0 0.6 22 201.4 1321.7 24660.5 5 9 0.1 68.0 -32422.0 0.4			166.9	70.7	10431.7	8.4	0.4	52.5	-53682.0	0.6	
21 192.0 39.5 7112.2 7.9 0.3 46.3 -56585.0 0.6 22 201.4 1321.7 24660.5 9.9 0.1 68.0 -32422.0 0.4			179.1	445.2	24564.2	10.0	0.1	61.3	-15749.0	0.4	
22 2014 13217 24660.5 9.9 0.1 68.8 -32422.0 0.4			192.0	39.5	7112.2	7.9	0.3	46.3	-56585.0	0.6	
			201.4	1321.7	24660.5	9.9	0.1	68.8	-32422.0	0.4	
23 207.2 268.4 19428.4 9.9 0.0 60.6 -39231.0 0.5			207.2	268.4	19428.4	9.9	0.0	60.6	-39231.0	0.5	Ų

Figure 10: Particle detection and annotation using particle tracking feature in SMART software.

Open source information

SMART is an open-source project. The source code can be downloaded from GitHub: <u>https://github.com/jackey-qiu/smart-line</u>

Developments at contributing institutions

Integrated concepts for correlative work flows are also developed at the institutions participating in the work package 15 - Joint Action JA5 - Correlative Nano-Spectroscopy and Nano-Diffraction, e.g. at the synchrotrons SOLEIL and the ESRF.

As one example, at SOLEIL, the correlative measurements including scanning transmission X-ray microscopy (STXM), spectro-ptychography, and scanning transmission electron microscopy (STEM) were performed to demonstrate enhanced photoelectrochemical performances by simply annealing Ti-doped hematite photoanodes grown by aqueous chemical growth under nitrogen compared to the commonly used air annealing (shown in Figure 11). The same nanoparticles were analysed using STXM (Figure 11(a)), spectro-ptychography (Figure 11(b)), and STEM in EDXS (energy dispersive X-ray spectrometry) and HAADF (high angle annular dark field) modes (Figure 11(c,d), respectively). This correlative approach was possible using a relocation approach that utilizes special hole-tagged SiN membranes which are compatible with multiple microscopy techniques. Yellow arrows in the Figures 11(a-d) guide the viewer to identical sample positions across microscopic images obtained from different techniques. Using STXM, the full NEXAFS spectral region across the Ti L_{2,3} absorption edge was measured with high spectral resolution, achieving better than 0.1 eV accuracy. The RGB color-coded map (Figure 11(a)) was obtained using the Singular Value Decomposition (SVD) method in the aXis2000 software, following drift correction. At the HERMES beamline, spectro-ptychography was seamlessly integrated by replacing the standard photomultiplier 0D detector tube with a 2D sCMOS camera, without altering the sample setup. Spectro-ptychography data were recorded from the same region of interest (ROI) as STXM (Figure 11(b)), generating an RGB map across the Ti L3 t2g transition using SVD, although fewer energy points were measured due to the extensive data size. The spectro-ptychography reconstructed image revealed surface clusters ranging from approximately 10 to 100 nm, with a pixel size of 8.5 nm. Furthermore, analytical STEM-EDX (Figure 11(c)) on the same nanoparticles confirmed the presence of Ti-rich areas at the surface of the Ti-doped hematite particles, with a corresponding HAADF image providing additional structural context (Figure 11(d)). Figure 11(e) shows the Overlay of spectro-ptychography and STEM signals.

Figure 11: a) Overview of STXM, b) spectro-ptychography, and c,d) STEM EDXS and HAADF results obtained from the same regions. e) Overlay of spectro-ptychography and STEM signals. Reprinted with permission from ACS Appl. Mater. Interfaces 2023, 15, 22, 26593–26605. Copyright 2023 American Chemical Society.

At the ID21 beamline of the ESRF, Si_3N_4 membranes with Pt markers written by ion- and electronbeam induced deposition (IBID and EBID) techniques will be used as part of the NFFA activities for transferring and positioning nano-objects. These Pt markers, with a thickness of 100 nm will enable precise alignment in correlative analyses with X-ray fluorescence and X-ray absorption spectroscopy techniques at ID21.

Initially, three membranes will be analysed to conduct preliminary tests. These tests are designed to evaluate the quality of the Pt markers, and based on the results, adjustments may be made to the fabrication process before producing more membranes.

The Pt markers were placed in three of the four corners of each Si_3N_4 membrane. Three membranes (Figure 12, left) have been produced with these markers. The markers are located 200 µm from the edge of the membrane, ensuring their correct placement in the corners. The SEM image in Figure 12 on the left shows the arrangement and proportions of the markers on the Si_3N_4 membrane.

The markers consist of a 2 × 2 μ m² square and L-shaped elements measuring 6 × 3 μ m², which are visible under a 10× objective. These elements are contained within a 10x10 μ m frame, located 200 × 200 μ m² from the membrane corner. Figure 12 on the right shows an SEM image of one of the Si₃N₄ membranes with the deposited Pt markers, confirming their correct deposition and positioning.

Figure 12: left, SEM image showing the positioning of the markers at the corners of the Si_3N_4 membranes, right, SEM detail of the geometric structure of the Pt markers on a Si_3N_4 membrane.

At ID21, the Daiquiri interface (Fisher et al., J. Synchrotron Radiat., 28(6), 1996-2002, 2021) is used for sample navigation and registration. This tool allows marking regions and collecting 2D μ XRF maps, as well as multispectral μ XRF maps in regions of interest, while μ XAS is performed on points of interest. Therefore, to have the correlative studies, the external images obtained from scanning electron microscopes (SEM) or visible microscope are imported in Daiquiri to locate regions of interest for X-ray analysis.

Once the images are imported, reference points or fiducials are selected on the image. These points must be easily recognizable and characteristic, as they will be used to align the sample in the microscope. At least three fiducials are required to create a well-defined area of interest. Subsequently, the fiducial points are linked to the corresponding positions in the microscope image, allowing for precise alignment of the sample on the stage and ensuring that the areas of interest are correctly located for further analyses. Additionally, the Daiquiri interface enables multiple images to be added to the canvas for large samples, facilitating detailed correlative analysis in different areas of the sample.

CONCLUSION AND OUTLOOK

The work package JA5 focuses on implementing a correlative platform that bridges microscopy, spectroscopy, and imaging infrastructures at nanoscience foundries and X-ray beamlines. The SMART software developed, implemented and tested partly within deliverable report 15.5 automates the identification and re-localization of nanoscale objects when transferred from lab-based instruments to large-scale X-ray facilities. Utilizing advanced algorithms, including DFT for precise alignment, SMART also incorporates a real-time camera stream for continuous nanoparticle monitoring during live experiments and for image registration and position refinement functions. The software was implemented and tested at the P06 beamline, PETRA III, DESY, using CeO_2 nanocube samples prepared in such a way to ensure the existence of isolated, individual nanoparticles. By employing Pt markers, imaging registration tools and correlative imaging approaches, the software facilitated accurate relocation and elemental analysis of the nanoparticles using X-ray fluorescence (XRF), as directly compared to SEM-EDX mappings. These features, combined with the high-resolution capabilities of the SMART software, mark a significant advancement in nanoscale research, allowing for precise structure-property correlations and improving the efficiency of beamline experiments. This work advances the correlative platform to include automated feature analysis and integration with focused X-ray beamlines, aiming to enable one-to-one correlative analysis of a statistically relevant number of nanoparticles. The platform is now ready to link the existing microscopy, spectroscopy, and imaging infrastructures at nanoscience foundries and X-ray beamlines, ensuring the mutual compatibility and interoperability needed to offer comprehensive translational access to users.

Acknowledgements

SMART is part of the PETRA III beamline P25 project, which is a joint project between DESY's Industry and Technology Transfer (ITT) group and Photon Science, under the umbrella of the DESY Innovation Factory. CeO₂ cubes where provided from Lachlan Caulfield and Dr. Eric Sauter from the Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Karlsruhe, Germany.

