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INTRODUCTION TO DATA SERVICES 
This deliverable presents a description of the new data services developed by the Work Package 

16 within NFFA Europe Pilot, extending the list of data services provided in Deliverable D16.2 at 

Month 18. All the services are intended to improve the FAIRness of the data, either by post-

processing of already existing data or by design at new data generation. Some of these services 

are planned to be included in the Virtual Access offer at Month 31 or at Month 37, according to the 

schedule agreed in the Proposal. The document is structured in sections describing one data 

service each. For completeness, each section explicitly includes the details about the future Virtual 

Access developments of the service, if this has been planned.  

 

1. Magn

etic Resonance image reconstruction and 

contrast prediction 
Magnetic Resonance Imaging (MRI) is applied in material sciences for non-invasive investigation of 

sample structure and composition, by leveraging the differences in tissue contrasts. However, 

every different type of contrast, encoded in the MR image, typically requires a separate 

measurement, which is a time-consuming task. In fact, the contrast in an MRI image emerges 

from the differences between pixel intensities I1(x1,y2) and I2(x1,y2) which depend on the signal 

that is specific for the sample properties and the parameters of the MR pulse sequence. The 

relevant pulse sequence parameters are the echo time (TE) and the repetition time (TR). They are 

correlated with the contrast types, i.e., T1-, T2-, and proton density- (PD) weighted contrast. The 

image contrast is weighted in dependence of the sample properties and the length of the 

sequence parameters relative to the length of the physical contrast values. Since the true T1, T2 

and PD values are typically unknown for a given sample, are affected by the measurement device, 

and can vary between different sample tissues, enhancing the contrast between various areas in 

the image requires multiple measurements with alternating TE and TR values, which are part of a 

specific MRI sequence protocol.  

The aim of this service is to optimise the information contained within the datasets measured in 

the same MRI experiment, to predict an alternative contrast type from a given one. This decreases 

the experimental time by a factor n for each of the n contrast types that can be predicted. 

To reduce the number of measurements, the proposed solution is to employ Machine Learning 

(ML) techniques for image contrast prediction. The essential idea is to train a ML model capable of 

finding relations between the contrast weights of the same image. Given a measured contrast, the 

model can then be used to predict, i.e., generate, the image for an alternative contrast. 

Technically, this problem can also be addressed as an image transformation task. The most 

common techniques applied in this field are Convolutional Neural Networks (CNN), which are 

especially suited for image data. The U-net structure, originally used in the field of medical image 

segmentation [1], has been proved as particularly efficient and is a promising candidate for this 

challenge. 
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The T1-, T2-, and PD- weighted image contrasts are fluid, and some images will often also contain 

contributions from the other contrasts when dominated by a specific one. Thus, a better approach 

is to express the contrast type in terms of the pulse sequence parameters TE and TR applied to a 

known sample type. A U-net will therefore receive the measured image together with the 

numerical values of the pulse sequence parameters for the given image, in order to predict the 

image for the alternative pulse sequence parameters. If trained with sufficient data points, the 

model should be capable of predicting multiple contrasts when pairs of images with alternating 

contrast types were used. Possible combinations are T1- to T2-w., T1- to PD-w., T2- to PD-w., and 

vice versa.  

However, the system becomes rapidly more complex with an increasing number of sample types, 

sequence protocols, and measurement devices used to generate the images. Without providing 

additional features that are related to these parameters, the model must learn the effects on the 

differences between multiple contrasts of the images. Therefore, the best practice is to start with a 

simple system where only one sample type, one sequence protocol, and one measurement device 

has been used to generate images with different contrast types. The model complexity can be 

gradually increased by adding data points of images with different provenance and sample 

characteristics. Then, the model performance is compared to the prior state. 

Currently, a preliminary U-net model [2] has been trained with a dataset of 138 series, with each 

series containing 1 or 10 images per sequence protocol and having a different set of TE and TR 

values. These images were recorded at the institute of Microstructure Technology at the Karlsruhe 

Institute of Technology and show a set of 7 sample tubes that contain different concentrations of 

CuSO4 (i.e., 0, 5, 10, 25, 50, 75, and 100 millimolar). Part of the used dataset is openly available 

[3] while the remaining data is still under embargo. Additionally, the number of images was 

artificially increased by image augmentation methods, varying the sample positions. In order to 

predict the alternative image contrast from a given one, images measured with specific TE and TR 

values were grouped into T1- and T2-weighted image contrast groups and aligned pairwise for 

training. Furthermore, the corresponding TE and TR values of the input and output image were 

used as additional features for the U-net.  

In its current version, the user may input in the model [2] the measured image, the pulse 

sequence parameters of the measured image, and those of the expected target image with the 

new contrast weighting. The output is the predicted image with the new contrast. 

As an example, Figure 1 shows the preliminary result obtained using as input a MRI image 

measured with TE=8ms, TR=200 ms (corresponding to a T1-weighted estimated contrast) and 

TE=25 ms, TR 500=ms (corresponding to a T2-weighted estimated contrast) as the parameters of 

the target image to be predicted. The comparison of Figure 1b and Figure 1c gives a qualitative 

impression about the success of the prediction algorithm. 

 

a b c 
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Figure 1: Preliminary results obtained with the contrast prediction model. Input image (a), ground 
truth (b), predicted image (c) 

To further improve the model, it is planned to increase the training data for the same or even 

additional samples, measured with specific TE and TR values that are currently missing. 

Furthermore, the U-net architecture will also be optimised. The trained model will be offered as a 

Virtual Access service for authenticated users starting from Month 37.  

 

2. Nucle

ar Magnetic Resonance data curation 
Data curation is the first step towards improving Nuclear Magnetic Resonance (NMR) correlation 

and spectral analysis algorithms, as well as enabling automation. NMR databases (e.g., [4]) and 

structured data formats (e.g., [5]) have been explored by many initiatives. The challenge, 

however, is to identify a data representation that not only contains all the essential data to reliably 

reconstruct the original spectra and to re-calculate the resonances, but also allows to uniformly 

compare and reuse data archived in different locations. 

We propose to use the concept of FAIR Digital Object (FDO) for the NMR spectra, as well as for 

the corresponding metadata. A FDO [6] is a data representation identified by a globally-unique, 

resolvable, Persistent Identifier (PID), described by an information record, and classified by a type 

which determines the operations a machine can perform on the data (e.g., in this case, the 

reconstruction algorithm, specified as FDO itself). The information record, created following the 

Helmholtz Kernel Information Profile (KIP) [7], contains the information required to access the 

data, in particular the reference to the repository where the data is deposited.  

This approach enables repository-agnostic (meta)data interpretation on a common basis for 

machines, connecting and relating the original data without any direct changes or any data 

migration. Thus, irrespective of where the NMR spectra are located at, they can be identified, 

accessed, and reused. With the introduction of this additional abstraction layer, the required 

operations for reconstructing the spectra and re-calculating the resonances can be included in the 

description (information record) of the FDO representing the original data in a structured and 

standardised way. 

FDOs are primarily intended for machine-actionability and automation; nevertheless, a human-

readable format of the information record is also possible. For this reason, the FAIR-DOscope [8] 

has been developed, which is a generic FDO viewer and browser which offers a tabular view of the 

contents of the information record and a graphical representation of related FDOs. 

As an example, we created the FDO for the Caripyrin - NMR Spectra Dataset [9] deposited in 

nmrXiv [10] and for its associated publication [11]. The PIDs [9, 11] can be used as input in the 

FAIR-DOscope [8] to visualise their content. Figure 2 shows how the FDO for the Caripyrin - NMR 

Spectra Dataset is intuitively represented in FAIR-DOscope. 
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Figure 2: A partial screenshot highlighting the tabular view of the information record in human-
readable form (left) and the graphical representation of the related FDOs (right) for the Caripyrin - 

NMR Spectra Dataset in FAIR-DOscope 

As a future development, an interface to a FDO graph will be provided, which can be used to list 

the collection of available FDOs representing the NMR spectra and the corresponding information. 

Users will be able to formulate SPARQL queries to search and filter the FDO graph in order to 

retrieve the data and metadata according to use-case specific criteria. The tool will be offered as a 

Virtual Access service for authenticated users starting from Month 37. 

 

3. Predic

tive service for nanostructures 
The presented service allows to predict morphological nanostructure of laser-processed surfaces 

from Machine Learning (ML) models, which have been trained on annotated datasets. The use of 

ML predictive models is motivated by the fact that they are computationally efficient, and their 

interpolation accuracy is very high. 

The predictive model of the service takes an input the natural logarithm of the number of pulses 

and the fluence, and returns the most probable surface structure. Feature engineering is 

performed, and new higher-order features are constructed and then fed to the ML models. The 

software trains several ML models including k-Nearest Neighbours, Gaussian Naive Bayes, Logistic 

Regression, Support Vector Classifier and Gradient Boosting Classifier. Due to the small size of the 
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datasets, neural networks and other data-hungry predictive models were excluded. The model has 

been implemented in Python using the scikit-learn library [12]. 

There are two usage scenarios for the predictive service: 

1. The use of trained ML models on new input data to predict their most probable surface 

pattern. The available predictive models have been trained on the following materials: Si, 

Steel 1.7131, Steel 1.7225 and Ti6Al4V. The expected input file (in csv format) should 

contain two columns corresponding to the input variables (natural logarithm of the number 

of pulses and fluence). 

2. The training of the ML models on new materials. The expected input file (in csv format) 

should contain three columns: natural logarithm of the number of pulses, fluence, and the 

label of the ground-truth surface pattern corresponding to the input variables. All the 

available ML models are then trained on the new input data and a final report, containing 

the mean accuracy and the corresponding standard deviation from a 5-fold cross-validation 

procedure, is generated. The best model is saved and can be used at later times for 

predictions (usage scenario 1) on the same material.  

A Graphical User Interface is currently under construction, and it will be available for authenticated 

users as part of the Virtual Access offer starting from Month 31. 

 

4.  

Materials Modelling: Damage Threshold 

Evaluation 
The employment of femtosecond (fs) pulsed lasers has received significant attention due to its 

capability to facilitate fabrication of precise patterns at the micro- and nano- lengths scales. A key 

issue for efficient material processing is the accurate determination of the damage threshold that 

is associated with the laser peak fluence at which minimal damage occurs on the surface of the 

irradiated solid. Despite a wealth of previous reports that focused on the evaluation of the laser 

conditions that lead to the onset of damage, the investigation of both the optical and thermal 

response of thin films of sizes comparable to the optical penetration depth is still an unexplored 

area. 

To describe the damage induced on the material following irradiation with fs pulses, a theoretical 

framework is employed to explore the excitation and thermal response of a double-layered 

structure (thin metal film on a dielectric material). The simulation algorithm is based on the use of 

a Two Temperature Model (TTM) that represents the standard approach to evaluate the dynamics 

of electron excitation and relaxation processes in solids [13]. For the sake of simplicity, a 1D-TTM 

is used to describe the thermal effects due to heating of the thin films with laser pulses of 

wavelength 𝛌L for a pulse duration 𝛕P. This multiscale physical model is used to correlate the 

energy absorption, electron excitation, relaxation processes and minimal surface modification [14, 

15] 

A Graphical User Interface (Figure 3) has been developed to allow a user-friendly evaluation of the 

impact of various parameters such as the photon energies, the pulse duration, the pulse 

separation (in case of double pulse experiments) and the material thickness on the damage 
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threshold for various metals (Au, Ag, Cu, Al, Ni, Ti, Cr, Stainless Steel); three different substrates 

(Si, SiO2 and soda lime silica glass) have been considered.  

 

Figure 3: Interface of the Damage Threshold Evaluation 

The software that has been developed to perform the simulations is written in Octave and the 

execution of the code is conducted on fast computers located at FORTH. Results are saved in txt 

format files (Figure 4) that contain the prescribed laser conditions and the materials used as well 

as information of the damage threshold (i.e. minimum fluence to melt the material). The maximum 

temperature in these conditions and comparison with the melting temperature is used to assess 

the accuracy of the algorithm. Furthermore, optical parameters (i.e. reflectivity and absorptivity) of 

the irradiated metals are calculated and their values are included in the txt file. A documentation 

[16] has also been included in the interface to provide the steps a user should follow as well as 

the underlying theory that describes the multiscale physical processes that lead to material 

damage.  

 

Figure 4: Output of the simulation for the Damage Threshold Evaluation 

The execution of the algorithm takes into account both the thermophysical and optical parameter 

values of the irradiated complex (metal/substrate). It has been developed assuming the most 

common metals and substrates while it is aimed to be extended soon to other metals and 

configurations (multi-layered materials, etc). The tool will be offered as a Virtual Access service for 

authenticated users starting from Month 31. 
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5. Metad

ata Editor 
The Metadata Editor is an open-source, cross-platform desktop application designed to efficiently 

retrieve metadata schemas from MetaStore and compile metadata documents [17]. This tool gives 

to the users an intuitive interface (Figure 5) to register metadata documents to MetaStore or 

save/export them for future modifications and reuse. To facilitate the automation and the 

interaction with experimental instruments and electronic notebooks, the application provides REST 

endpoints for schema compilation and field reading. 

 

Figure 5: Metadata Editor home page 

The main workflows for the Metadata Editor, illustrated in Figure 6, are: 

1. Generate a metadata document: 

1.1. Choose one of the following options: 

1.1.1. Select a metadata schema from the MetaStore. It is possible to filter 

them by label, ID, and version. 

1.1.2. Load a previously saved .jme file to complete or modify the metadata 

document compilation 

1.2. Compile the rendered form. During this stage, the tool automatically 

validates the input and displays any errors or missing mandatory fields to 

the user. 

2. Save a metadata document: 

2.1.1. Upload the metadata document to MetaStore. In this case, the user 

needs to provide a metadata schema record with relevant 

information about the compiled metadata document. NFFA login is 

required for this step. 

2.1.2. Export the generated document as a .json file. 

2.1.3. Save a file in a proprietary format (.jme) for completing the schema 

compilation later. 

3. Obtain the provenance: 
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3.1. Select the metadata document for which to generate the provenance. The 

documents are grouped by schema ID and can be chosen from a dropdown 

menu, sorted by last update date and time. NFFA login is required for this 

step. 

3.2. Save the provenance for the selected document as a .json file. 

 

 

Figure 6: Metadata Editor workflow. Red, blue and green processes indicate flow 1, 2 and 3 
described in the text, respectively. Dashed arrows indicate that authentication is required. Process 

inside grey boxes are on the same application page and are mutually exclusive 

The editor offers a set of useful tools to enhance the form visualisation and compilation process, 

as depicted in Figure 7. The user can selectively 'lock' the fields by checking them individually. This 

allows for hiding the unlocked fields, leaving only the locked ones visible. This is particularly handy 

because certain fields could be automatically populated from a locally pre-filled JSON or from data 

provided by some experimental instrument, and this locking functionality enables immediate 

access to only the relevant fields for editing without the need to scroll through the entire form. 

 

 

MetaStore 
schemas 

Local .jme 

Fill document  

Register to 
MetaStore 

Export as .json 

Save as .jme 

Upload 

Save local file 

Provenance Select MetaStore 
document 

Save local file 
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Figure 7: Metadata Editor screenshots for some steps of flow 1. Form compilation (left) and 
metadata document uploading (right) 

Additionally, local .json documents can be loaded to populate the form by using the 'load .json 

document' button. Furthermore, these documents can be utilised to create a document merge, 

where only the locked fields remain untouched, and all other fields are overwritten. This can be 

done through the 'merge .json document' button. This functionality is particularly useful when 

multiple partially filled .json documents already exist and need to be merged, e.g. the “user” 

information and the “instrument” parameters.  

Technical details 

The metadata editor has been developed using the Electron framework, starting from the Electron 

React Boilerplate project [18], with React.js and the JSONForms library to generate compilable 

forms from JSON schemas [19]. For defining and exposing REST endpoints, Express.js is used. 

To generate provenance and register metadata documents to MetaStore, users must authenticate 

using NFFA credentials. The login procedure is managed by utilising the AppAuth-JS library, which 

ensures a secure flow of authorization by employing the user's browser and PKCE protocol [20]. 

This approach adheres to the RFC 8252 best practices for OAuth 2.0 in Native Apps [21]. No 

personal data is stored or handled by the Metadata Editor, the keycloak uuid and token being the 

only information needed to grant access. 

Being a desktop application, the tool is currently not part of the Virtual Access, and there are no 

plans to include it in the future. 

 

References 
[1] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image 

Segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, 

LNCS, Vol.9351: 234—241 (2015). DOI: 10.48550/arXiv:1505.04597 

[2] N. Blumenröhr, MRI contrast prediction package https://github.com/nicolasblumenroehr/MRI-

Contrast-Prediction-Package 

[3] N. Blumenröhr, N. MacKinnon, R. Aversa, Magnetic Resonance Imaging Copper Sulfate 

Dataset. Zenodo (2022). DOI: 10.5281/zenodo.7319761 

[4] nmrXiv webpage https://nmrxiv.org/ 

[5] NMReDATA Initiative webpage https://www.nmredata.org/ 

[6] E. Schultes, & P. Wittenburg, FAIR Principles and Digital Objects: Accelerating Convergence on 

a Data Infrastructure. In Y. Manolopoulos & S. Stupnikov (Eds.), Data Analytics and Management 

in Data Intensive Domains (Vol. 1003, pp. 3–16). Springer International Publishing (2019). DOI: 

10.1007/978-3-030-23584-0_1 

[7] Helmholtz Metadata Collaboration, Helmholtz Kernel Information Profile. HMC Paper, 2. 35 pp. 

DOI: 10.3289/HMC_publ_03 

[8] FAIR-DOscope access page https://kit-data-manager.github.io/fairdoscope/ 

[9] Caripyrin - NMR Spectra Dataset. PID: 21.11152/125793fe-c31f-4a0d-93a7-397de72eca40 

https://github.com/nicolasblumenroehr/MRI-Contrast-Prediction-Package
https://github.com/nicolasblumenroehr/MRI-Contrast-Prediction-Package
https://nmrxiv.org/
https://www.nmredata.org/
https://kit-data-manager.github.io/fairdoscope/


www.nffa.eu 

secretariat@nffa.eu 

This initiative has received funding from the EU’s H2020 framework program for research and 

innovation under grant agreement n. 101007417, NFFA-Europe Pilot Project 

   

14 
 

[10] Caripyrin - NMR Spectra Dataset. DOI: 10.57992/nmrxiv.p7 

[11] P.H. Rieger, J.C. Liermann, T. Opatz, H. Anke, E. Thines, Caripyrin, a new inhibitor of 

infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae. PID: 

21.11152/f1291732-9d19-4284-b35a-25b6804d4ff3 

[12] https://scikit-learn.org/stable/ 

[13] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, Zhurnal Eksperimentalnoi Teor. Fiz. 66, 

776 (1974) [Sov. Phys. Tech. Phys. 11, 945 (1967)] 

[14] G.D. Tsibidis, E. Stratakis, ‘The impact of the substrate on the opto-thermal response of thin 

metallic targets following irradiation with femtosecond laser pulses’, Journal of Central South 

University 29, 3410 (2022). DOI: 10.1007/s11771-022-5169-4 

[15] G.D. Tsibidis, E. Mansour, E. Stratakis, ‘Damage threshold evaluation of thin metallic films 

exposed to femtosecond laser pulses: the role of material thickness’, Optics and Laser Technology 

156,108484 (2022). DOI: 10.1016/j.optlastec.2022.108484 

[16] G. Tsibidis, Manual for the use of the interface to compute the damage threshold of metals of 

various thicknesses following irradiation with femtosecond laser pulses. https://nffa-

modeling.iesl.forth.gr/docthermal 

[17] Metadata Editor GitLab page https://metadata-editor.gitlab.io/documentation/ 

[18] https://electron-react-boilerplate.js.org/ 

[19] https://jsonforms.io/ 

[20] https://github.com/openid/AppAuth-JS 

[21] https://datatracker.ietf.org/doc/html/rfc8252 

https://scikit-learn.org/stable/
https://nffa-modeling.iesl.forth.gr/docthermal
https://nffa-modeling.iesl.forth.gr/docthermal
https://metadata-editor.gitlab.io/documentation
https://electron-react-boilerplate.js.org/
https://jsonforms.io/
https://github.com/openid/AppAuth-JS
https://datatracker.ietf.org/doc/html/rfc8252

