

PROJECT DETAILS

PROJECT ACRONYM PROJECT TITLE

NEP Nanoscience Foundries and Fine Analysis - Europe|PILOT

GRANT AGREEMENT NO: FUNDING SCHEME

101007417 RIA - Research and Innovation action

START DATE

01/03/2021

WORK PACKAGE DETAILS

WORK PACKAGE ID WORK PACKAGE TITLE

WP9 VA – Virtual Access

WORK PACKAGE LEADER

Dr. Rossella Aversa (KIT)

DELIVERABLE DETAILS

DELIVERABLE ID DELIVERABLE TITLE

D – D9.1 Deployment of the VA service prototypes

DELIVERABLE DESCRIPTION

This Deliverable presents the prototype of the first Virtual Access service: an instance of the MetaStore,
named MetaRepo. The service has been installed as a virtual machine hosted at KIT, and has been
connected to the Single-Sign-On. The service can be accessed using a Graphical User Interface. A
monitoring service on the MetaRepo side makes a call to the API of the database test instance at each
action performed in the MetaRepo by logged-in users, in order to keep track of the activities of the
Virtual Access service.

DUE DATE ACTUAL SUBMISSION DATE

M13 31/03/2022 31/03/2022

AUTHORS

Rossella Aversa (KIT)
Giuseppe Piero Brandino (eXact Lab)

2

Sabrine Chelbi (KIT)
Volker Hartmann (KIT)
Thomas Jejkal (KIT)

PERSON RESPONSIBLE FOR THE DELIVERABLE

Dr. Giuseppe Piero Brandino (eXact Lab)

NATURE

☒ R - Report

☐ P - Prototype

☐ DEC - Websites, Patent filing, Press & media actions, Videos, etc

☐ O - Other

DISSEMINATION LEVEL

☒ P - Public

☐ PP - Restricted to other programme participants & EC: (Specify)

☐ RE - Restricted to a group (Specify)

☐ CO - Confidential, only for members of the consortium

3

REPORT DETAILS

ACTUAL SUBMISSION DATE
DD/MM/YYYY

NUMBER OF PAGES

24 (right-click and select “update the field”)

FOR MORE INFO PLEASE CONTACT

Dr. Giuseppe Piero Brandino
eXact Lab
Via Crispi, 56 – 34126 Trieste
(Italy)

email: brandino@exact-lab.it

VERSION DATE AUTHOR(S)
DESCRIPTION /
REASON FOR MODIFICATION STATUS

1 24/02/2022 R. Aversa First draft Draft

2 28/02/2022 R. Aversa Introduction Choose an item.

3 02/03/2022 R. Aversa, T.
Jejkal

Naming convention, Access to
Resources

Choose an item.

4 09/03/2022 V. Hartmann, R.
Aversa

MetaRepo, Access monitoring Choose an item.

5 09/03/2022 S. Chelbi MetaRepo GUI Choose an item.

6 11/03/2022 G.P. Brandino SSO Choose an item.

7 13/03/2022 R. Aversa Revision, References Choose an item.

8 18/03/2022 R. Aversa Major Revision of naming
convention

9 29/03/2022 All Final Version

10 15/02/2023 R. Aversa Revision after reviewer
comments

CONTENTS
Introduction 6

4

1. MetaRepo 6

2. MetaRepo GUI 8

2.1 Schema Management 8

2.2 Metadata Management 14

3. Naming convention 18

4. MetaRepo Authorization and Authentication 21

4.1 Single Sign On (SSO) 21

4.2 Access to Resources 21

5. MetaRepo Access Monitoring 22

6. Comparison of the current prototype to the target architecture 23

References 24

5

INTRODUCTION

Virtual Access (VA) is a novel service offered in NEP. It comprises innovative online simulation
services, databases, machine learning services, data and metadata services, which will be
seamlessly integrated into the NEP infrastructure and provided as cloud services to authenticated
users. The access will be provided by the facilities hosting the services. Each Access Provider will
operate its own infrastructure, made of one or more installations. All involved Access Providers will
offer identified User Access to the VA services under their own schemes based on institutional
policies.

Part of the online data services that will be made available as VA are currently (or will be)
developed in the Joint Activity (JA) 6 on FAIR data approach. According to the NEP proposal, seven
services are planned, even though scouting activities to enlarge the offer are foreseen. The
services are at different stages of development, and will be gradually completed and integrated
into the offer.

This deliverable presents the first prototype of a VA service: the MetaRepo, a metadata repository
to register and validate Metadata Schemas and Metadata Documents. The document is structured
as follows: Section 1 describes the MetaRepo service, and Section 2 shows the functionalities of its
Graphical User Interface (GUI). Being the purpose of this Section only demonstrative, for the sake
of simplicity the functionalities of the MetaRepo GUI are shown on basic examples instead of being
applied to a real NEP use case. This choice has been made to prevent the confusion which might
arise due to the complexity of the Metadata Schemas. A real usage example is presented in
Milestone 10. Section 3 shows how the Authorization and Authentication has been implemented for
the MetaRepo. Section 4 explains how the monitoring of user accesses and actions is performed.

1. MetaRepo
MetaRepo is the NEP instance of MetaStore [1]. It offers a generic metadata repository and
Metadata Schema registry which provides metadata versioning and, at later time, metadata search
and visualisation. From the technological perspective, it will be accessible via RESTful service
interfaces. It enables Data Curators to register Metadata Schemas in one of the two supported
formats: XML Schema Definition (XSD) or JSON Schema, and it allows Research Users to store
Metadata Documents which are automatically validated at upload time against the corresponding
registered Metadata Schema.

A Metadata Schema describes the structure and the content of the XML or JSON Object, which
should be registered in the MetaRepo.
While registering a Metadata Schema, a Metadata Schema Record is required. It represents a
JSON document and includes administrative metadata of the Metadata Schema (e.g. Creator,
Creation Date, Access Rights).
A Metadata Document describes an XML or JSON resource, which should be ingested in the
MetaRepo.

6

While registering a Metadata Document, a Metadata Document Record is required. It is a JSON
document and includes administrative metadata of the Metadata Document.

The MetaRepo will be populated with Metadata Documents linked to scientific Datasets resulting
from Transnational Access Experiments, as well as with administrative Metadata Documents
regarding the related Proposal and the Research User information. This additional metadata in a
standardised format, i.e. DataCite [2], provides further contextualisation of each Dataset besides
the technical description of the Dataset itself, which serves further applications of metadata, such
as search or publication.

As stated in the NEP Data Management Plan (DMP) [3], Research Users must ensure Open Access
(free of charge online access for any user) to all Publication Data, that is the Research Data
generated in the NEP project needed to validate the Results presented in a Scientific Publication or
appearing in it, including all the relevant metadata.

At publication time, the Research User will not need to collect and check the metadata: using the
MetaRepo at each step of the Study (e.g., Sample Preparation, Measurement, Data Analysis) will
ensure to already have complete validated metadata, linked to the relevant Raw and/or Analysed
Data.

The first version of the prototype is available at [4] and can be accessed thanks to its GUI (see
Section 2). It runs on a virtual machine (4 CPUs, 16 GB RAM, 50 GB SDD, OS: Debian 11
(Bullseye), SSL via Apache reverse proxy) hosted at KIT. Currently, only authenticated users are
allowed to read/write documents based on access control lists. A more detailed description of how
the access to resources is managed can be found in Section 4.2.

Authentication is done via SSO (described in Section 4.1), which is provided by the NFFA-Europe
portal [5]. Every access to the MetaRepo that requires to read, write or modify Metadata
Resources, as well as to retrieve relevant information, such as Research User and Proposal Data, is
authenticated. After authentication, Research Users can browse all the available Metadata
Schemas and Documents according to the access control list (Section 4.2), or to search, retrieve,
add and edit the Metadata Document describing a specific Measurement.

Once the Research Users have selected an appropriate Metadata Schema for their Research Data,
they can create a Metadata Document and store it in the MetaRepo. Each Metadata Document
must be associated with a registered version of a Metadata Schema and its data resource, in order
to be validated during the ingest process. In case of successful validation, the Metadata Document
is saved and associated to a unique URL; otherwise, the ingest is rejected. Each valid update of a
Metadata Document results in a new version of the document, accessible/referenceable via a
unique URL.

In future releases, the different Metadata Documents will be co-referenced using internal IDs. In
this way, the MetaRepo will give the possibility to match Proposals with publications and the
corresponding Data Provenance, offering a clearer insight on the scientific process from the project
idea to the research output. Currently, a naming convention for Metadata Record IDs has been
established (see Section 3) to keep track of the Data Provenance.

After a testing and hardening phase, the MetaRepo is expected to be available as a prototype with
full functionalities at Month 25, and will be in production state during the last three years of the
NEP project. The Deliverable 9.2, due at Month 31, will include the additional features of the next
versions of the MetaRepo prototype.

7

2. MetaRepo GUI
The MetaRepo GUI, accessible at [4] offers an intuitive user interface, which allows the easy use of
the MetaRepo. This user-friendly GUI has been based on the Metadata Editor [6], a JavaScript
Library developed at the Karlsruhe Institute of Technology - Steinbuch Centre for Computing
(KIT-SCC), which has been integrated in the MetaRepo. With the help of the GUI, the Research
User can perform all the RESTful operations provided by the service on Metadata Schemas and on
Metadata Documents, which will be shown in Sections 2.1 and 2.2, respectively.

The GUI provides a dashboard page, shown in Figure 1, which includes two large buttons “Schema
Management” and “Metadata Management”.

Figure 1: Dashboard Page

With the help of these buttons, all stored Metadata Schema Records and Metadata Document
Records can be listed. At the bottom of the page, a GUI documentation will be added to give more
information on how to use the GUI. At the top of the page, a menu allows users to easily navigate
through the available pages, which are “Dashboard”, “Schema Management” (explained in Section
2.1) and “Metadata Management” (explained in Section 2.2). To facilitate the navigation, the name
of the current page is coloured in dark grey in the menu, and it also appears on the right side at
the bottom of the menu.

2.1 Schema Management
The actions offered to the users in the “Schema Management” page are:

A. To list all the available Metadata Schema Records
B. To Create a new Metadata Schema Record in order to register a new Metadata Schema
C. To visualise a Metadata Schema Record
D. To visualise a Metadata Schema
E. To update a Metadata Schema Record and/or a Metadata Schema
F. To list only the available Metadata Document Records related to a given Metadata Schema

The user can list all the available Metadata Schema Records (action A) via the large button or the
menu item “Schema Management”. The page includes a table, shown in Figure 2, which lists all
registered Metadata Schema Records. The table header includes the most important properties of

8

the Record. The user can choose the pagination size (i.e., the number of Metadata Schema
Records listed in each page) of the table by changing the page size at the bottom.

As a Metadata Schema can have different versions, the user can visualise and update a specific
Version of the Metadata Schema, or list the Metadata Document Records based on a specific
Schema Version. By clicking on the pencil icon in the Schema Version (shown in Figure 2), the user
can select the Metadata Schema Version.

Figure 2: List of registered Metadata Schema Records (action A). The table includes Metadata
Schemas in the two supported formats: JSON and XML

To register a new Metadata Schema (action B), the “Register new Schema” button can be used.
This action triggers the generation of a form (shown in Figure 3), which allows the user to provide
the administrative metadata necessary to manage the Metadata Schema itself (i.e., to create the
Metadata Schema Record). In the same form, the user can upload the Metadata Schema and
validate the inputs.

9

Figure 3: Creation of a Metadata Schema Record for a new Metadata Schema (action B)

A message is shown to notify whether the operation is successfully executed or not. In case the
Metadata Schema Record is created, it is listed in the table. As shown in Figure 2, different actions
are possible on registered resources, represented by icons: to visualise the properties of the
Metadata Schema Record (action C, “eye icon”), to update some fields of the Metadata Schema
Record and/or the Metadata Schema (action E, “edit icon”) and to list of all the ingested Metadata
Document Records validated against the given Metadata Schema (action F, “list icon”). The user
can move the mouse over the icons to read their functionalities.

By clicking on the “eye icon” (action C), all the properties of the Metadata Schema Record are
visualised in a form, shown in Figure 4.

10

Figure 4: Visualisation of the properties of the Metadata Schema Record (action C)

The form includes, in turn, another button called “Schema” in order to visualise the Metadata
Schema registered in the Record (action D), which generates the Metadata Schema as a form in
case the file format is JSON (Figure 5), or simply shows the Metadata Schema if the file format is
XSD (Figure 6).

Figure 5: Visualisation of the JSON Metadata Schema Form (action D)

11

Figure 6: Visualisation of the XSD Metadata Schema Form (action D)

By clicking on the “edit icon”, the user can update the Metadata Schema Record and/or the
Metadata Schema (action E). As illustrated in Figure 7, the Metadata Schema can be updated
either manually by using the generated form, or by uploading a new file. In case no file is
uploaded, only the Metadata Schema Record is updated.

12

Figure 7: Update of the Metadata Schema Record and the Metadata Schema (action E)

By clicking on the “list icon”, the user can list all Metadata Document Records related to a given
Metadata Schema (action F), as shown in Figure 8.

Figure 8: List of Metadata Document Records related to the Metadata Schema “1134-f53-67tr”
(action F)

13

2.2 Metadata Management
The same actions described in Section 2.1 for Metadata Schemas can be executed on Metadata
Documents in the “Metadata Management” page, where the same page layout is used. In
particular:

G. To list all the available Metadata Document Records
H. To Create a new Metadata Document Record in order to register a new Metadata

Document
I. To visualise a Metadata Document Record
J. To visualise a Metadata Document
K. To update a Metadata Document Record and/or a Metadata Document

The user can list all the Metadata Document Records ingested in the MetaRepo (action G) via the
large button or the menu item “Metadata Management”. The page includes a table, shown in
Figure 9, which lists all the registered Metadata Document Records. The table header includes the
most important properties of the Record, in particular the identifier of the Metadata Schema it is
based on. The user can choose the pagination size (i.e., the number of Metadata Document
Records listed in each page) of the table by changing the page size at the bottom.

Figure 9: List of all registered Metadata Document Records (action G). The table includes two
Metadata Documents based on different Metadata Schemas

To create a new Metadata Document Record in order to register a new Metadata Document (action
H), the button “Register new Metadata Document” can be used. This action triggers the generation
of a form (shown in Figure 10) which allows the user to provide the administrative metadata
necessary to manage the Metadata Document itself (i.e., to create the Metadata Document
Record). It is important to remark that a Metadata Document must always be validated against a
registered Metadata Schema; thus, the “Schema” field is mandatory.

In the same form, the empty Metadata Document can be generated according to the selected
Metadata Schema and the form can be filled in manually, or the Metadata Document can be
uploaded as a file in any supported format (JSON or XML). If the document is uploaded, a filled

14

form is generated in case of JSON format (as shown in Figure 12) or the file is visualised in case of
XML format (as shown in Figure 13), so that the inputs can be checked by the user before
registering it.

Figure 10: Creation of a Metadata Document Record for a new Metadata Document (action H)

In case the Metadata Document is ingested correctly, it is listed in the table containing all the
available Metadata Document Records (action G). As shown in Figure 9, different actions are
possible on registered resources, represented by icons: to visualise the properties of the Metadata
Document Record (action I, “eye icon”) and to update some fields of the Metadata Document
Record and/or the Metadata Document (action K, “edit icon”). The user can move the mouse over
the icons to read their functionalities.

By clicking on the “eye icon” (action I), all the properties of the Metadata Document Record are
visualised in a form, shown in Figure 11.

15

Figure 11: Visualisation of the properties of the Metadata Document Record (action I)

The form includes, in turn, another button called “Metadata Document” in order to visualise the
Metadata Document registered in the Record (action J), which generates the Metadata Document
as a form in case the file format is JSON (Figure 12), or simply shows the Metadata Document if
the file format is XML (Figure 13).

Figure 12: Visualisation of the JSON Metadata Schema Form (action J)

16

Figure 13: Visualisation of the XML Metadata Document (action J)

By clicking on the “edit icon”, the user can update some properties of the Metadata Document
Record and/or the Metadata Document (action K). As illustrated in Figure 14, the Metadata
Document can be updated either manually by using the generated form (shown in Figures 12 and
13), or by uploading a new file. In case no document is uploaded, only the Metadata Document
Record is updated.

17

Figure 14: Update of the Metadata Document Record and/or Metadata Document (action K)

3. Naming convention
As mentioned before, the MetaRepo currently only offers basic Data Provenance support via
versioning. This means, changes of a single Metadata Record are tracked, but interlinking
Metadata Records to build up a more complex Data Provenance chain is only planned for a future
release. The Deliverables D16.3 and D16.6, due at Month 18 and 48 respectively, will describe the
good practices for Data Provenance and the Data Provenance Tools for the NEP community.

To be able to reflect a Data Provenance chain in the current version of the MetaRepo, we decided
to apply a naming convention to Metadata Record IDs. The pattern is built in an incremental way,
appending the Measurement (m) and the Analysis (a) to the Proposal ID (p), each of them
including the version of the Metadata Document and the Metadata Schema used. In case of
Metadata Documents describing Datasets generated from Joint Activities, not related to any
Proposal, the Proposal ID can be substituted by the Joint Activity (ja) number. The following
incremental example, summarised in Table 1, shows how the naming convention is applied to the
identifiers for the records.

Let’s suppose the Research User is a member of the Proposal with ID 42. The Proposal Metadata
Schema has been already registered at the MetaRepo in a Record with ID “nep_proposal” and with

18

relatedResource property of the Record pointing to the Proposal page on the NFFA-Europe website
[11]. The Research User registers at the MetaRepo the Proposal Metadata Document automatically
mapped from the database dump in a Record with Metadata Schema ID “nep_proposal” and with
unique record ID “p42_1_nep_proposal”, where “p” stands for proposal “42” is the proposal ID,
“_1” indicates that this is version 1 of the document, and “nep_proposal” indicates the ID of the
used Metadata Schema.

The reason for including a version number in the naming pattern is caused by the way the
MetaRepo realises versioning. As soon as the content of a Metadata Document is changed, the
version of the corresponding Metadata Record is incremented. Accessing a Metadata Record
returns the most recent version by default, unless the Research User provides a version number as
a query parameter. If we now use the built-in versioning of the MetaRepo, “p42” may change over
time. This may cause issues in the Provenance chain as the result of obtaining “p42” can change
over time as no one can know on which version a certain follow-up step has been performed. This
might not be that critical for Proposal Metadata, but gets more relevant later on for Dataset
metadata and analysis results. That’s why we decided to include the version in our naming
convention until proper interlinking of Metadata Records including their version information is
possible. For now, if the metadata of “p42_1” changes, a new Metadata Record with id “p42_2” is
created, while everything based on “p42_1” remains unaffected.

It is worth reminding that, as a data resource can be described according to different Metadata
Schemas: depending on the purpose, different metadata can be relevant. Thus, there can be
multiple Metadata Document Records related to the same resource. To have an appropriate Data
Provenance, it is relevant to keep track of it in the naming convention of each Metadata Document
Record ID.

For example, the Research User now generates some Raw Data: a Dataset using Magnetic
Resonance Imaging (MRI), and stores it on Zenodo at a certain URL. A Metadata Schema has been
created with features extracted from the DICOM file [7] which are useful for future Machine
Learning applications. This Metadata Schema has been already registered at the MetaRepo with
Metadata Schema Record ID “mri_ml”. The Research User registers the Metadata Document
describing the MRI Dataset at the MetaRepo in a Record with schema ID “mri_ml”. As the Dataset
is associated with Proposal 42, the unique record ID for the Metadata Document is
“p42_1_nep_proposal_m1_1_mri_ml”, where “p42_1_nep_proposal” stands for the proposal ID 42
version 1 based on “nep_proposal” Schema, “m1” stands for measurement number 1, “_1”
indicates that this is version 1 of the document, and “mri_ml” indicates the ID of the used
Metadata Schema. The relatedResource property of the Record may point to the dataset URL on
Zenodo or any equivalent Data Repository. It’s important to mention that the measurement
number is assigned just in a sequential order at registration time, without any relation to the
Dataset name or the sequence during an Experiment.

In addition, for future publication purposes, it can be useful to have Datasets described by the
DataCite Metadata Schema, which has been already registered at the MetaRepo with ID “datacite”.
Thus, the Research User uploads a DataCite Metadata Document with schema ID “datacite” for the
new Metadata Record with ID “p42_1_nep_proposal_m1_1_datacite”. Now the Research User finds
three MetadataRecords in the MetaRepo: one with ID “p42_1_nep_proposal” containing the
Proposal Metadata Document following the “nep_proposal” Metadata Schema, one with ID
“p42_1_nep_proposal_m1_1_mri_ml” containing the MRI Dataset Metadata Document following
the “mri_ml” Metadata Schema, and one with ID “p42_1_nep_proposal_m1_1_datacite” containing
the MRI Dataset Metadata Document following the “datacite” Metadata Schema.

19

The Research User performs a Data Analysis on the MRI Dataset and obtains as output some
Analysed Data. The Metadata Schema for the Data Analysis has been already registered at the
MetaRepo in a Record with ID “analysis”. The Research User registers the Analysis Metadata
Document (following the “analysis” Metadata Schema) at the MetaRepo in a Record with schema
ID “analysis” for the new Metadata Document Record with ID
“p42_1_nep_proposal_m1_1_mri_ml_a1_1_analysis”, thus appending “a1_1_analysis” to the
parent resource “p42_1_nep_proposal_m1_1_mri_ml”, to indicate that this document (in version 1)
describes the analysis 1 (following the “analysis” schema) performed on the Dataset generated
from measurement 1 (in version 1, following the “mri_ml” schema) related to the proposal with ID
42 (in version 1, following the “nep_proposal” schema).

The Research User may perform a second (different) Data Analysis. If the analysis is performed on
the MRI Dataset, the parent Record is “p42_1_nep_proposal_m1_1_mri_ml”, thus the unique
record ID of the new Record is “p42_1_nep_proposal_m1_1_mri_ml_a2_1_analysis”, where the
last analysis has sequence number “2” on the same Dataset (in the sequential order at registration
time). If instead the analysis is performed on the Analysed Data, output of the first analysis
performed on the MRI Dataset, the parent resource is
“p42_1_nep_proposal_m1_1_mri_ml_a1_1_analysis” and the unique record ID of the new
resource is “p42_1_nep_proposal_m1_1_mri_ml_a1_1_analysis_a1_1_analysis”, where the last
“a1_1_analysis” is appended to describe the last analysis. It is important to remark that the
sequential numbering is related to the previous element of the same level. In this case, the last
analysis has sequence number “1” because it’s the first one performed on the Analysed Data.

Table 1: Summary of the naming convention adopted for the ID of the Metadata Document
Records in the MetaRepo. The first column indicates the Metadata Document, the second column
indicates the corresponding name of the Record ID, and the third column indicates the ID of the

related Metadata Schema Record

Metadata Document Metadata Document
Record ID

Related Metadata Schema ID

NEP Proposal with ID 42 p42_1_nep_proposal nep_proposal

NEP Joint Activity 6 ja6_1_nep_ja nep_ja

Raw Data for Machine
Learning applied to MRI

p42_1_nep_proposal_m1_
1_mri_ml

mri_ml

Raw Data following DataCite
for publication

p42_1_nep_proposal_m1_
1_datacite

datacite

Analysed Data after Analysis
on Raw Data

p42_1_nep_proposal_m1_
1_mri_ml_a1_1_analysis

analysis

Analysed Data after (different)
Analysis on Raw Data

p42_1_nep_proposal_m1_
1_mri_ml_a2_1_analysis

analysis

Analysed Data after Analysis
on (previous) Analysed Data

p42_1_nep_proposal_m1_
1_mri_ml_a1_1_analysis_a
1_1_analysis

analysis

20

4. MetaRepo Authorization and Authentication
4.1 Single Sign On (SSO)
As any other authenticated service, access to the MetaRepo will be mediated by the NEP SSO
system based on the open-source package Keycloak [8].

To make the Keycloak SSO available for the MetaRepo, additional configuration and integration has
been applied. At first, a Keycloak Client was configured with the goal to use it later on to issue
authentication tokens for operations on the MetaRepo. The Keycloak Client uses the
openid-connect protocol for authentication handshakes. As these handshakes involve user
interactions (i.e., adding username and password if required) and redirects (i.e, redirect to the
Keycloak login page and back to the requesting service) which are preferably handled by a Web
Browser, the Keycloak Client is focussed on being used by the MetaRepo GUI. As the MetaRepo
GUI is implemented in JavaScript, the Keycloak Client had to be configured for being public, as
providing a client-specific secret restricting the access to this particular client does not make any
sense as it would have to be hardcoded in the Javascript, which is readable by any user.

Since every Metadata Document is linked to a NEP Proposal, the Proposal management service
adds the list of Proposal IDs to the user token in the form of “User Attribute”, that is then passed
in the JWT token. In such a way, the MetaRepo is aware of the user authorization level, in
particular regarding editing rights.

After configuring the Keycloak Client, integration into the MetaRepo GUI took place. We used the
official Keycloak JavaScript adapter parameterized to connect to the NEP Keycloak instance using
the previously created Keycloak Client for authentication.

4.2 Access to Resources
Access to resources, i.e., Metadata Records in the MetaRepo, is defined in access control lists
which are part of a resource’s metadata. These access control lists are a simple mapping between
a unique identifier, e.g., a user or group identifier, and a permission enumeration, i.e,
ADMINISTRATE, WRITE, READ and NONE. The permission defines which operations can be
performed on a particular resource, where ADMINISTRATE grants full access, WRITE allows to
read and modify a resource, and READ only allows to read a resource.

In the MetaRepo, initial access control information is added at creation time of a resource. Thereby
the creator of the record receives ADMINISTRATE permissions, whereas the proposal group
receives WRITE permissions. Assigning group permissions at this point has the advantage that
administration effort is reduced on the level of the MetaRepo as proposal memberships are
centrally managed at Keycloak [8]. However, if required, the option of assigning fine-grained
permissions on the user-level still exists. This allows adding user-specific permissions overwriting
permissions a Research User obtains by proposal membership.

To allow the MetaRepo to decide on access permissions, a Research User has to log in using the
Single Sign-On service of NEP (described in Section 4.1). This happens automatically as soon as
the Research User tries to access the MetaRepo GUI (Section 2). The Research User is redirected
to the Keycloak login page, where username and password must be provided. If authentication
succeeds, the Research User is redirected back to the MetaRepo GUI which also receives a JSON

21

Web Token (JWT) [9] that is used for further authentication towards the MetaRepo. This JWT
contains a number of so-called claims, which are basically attributes in a standardised JSON object.
Among these attributes, the unique user ID and the list of proposals the user is a member of are
used by the MetaRepo to decide whether a Research User is authorised to obtain a certain
resource.

For security reasons, JWTs have a very short lifetime (a few minutes) which helps to limit the time
for potential misuse in case a JWT has been compromised. Thus, JWTs have to be renewed
frequently, which happens automatically without the need for user interaction.

Summarising, Keycloak offers an elegant way to keep user and group management at one trusted
place and allows only to consume this information by VA services. Thus, any changes to Research
Users, e.g., proposal memberships, can be organised centrally and are immediately propagated to
consuming services at their next call.

5. MetaRepo Access Monitoring
MetaRepo is offered as a VA service to authenticated users, and its usage is monitored by counting
the Units of Access to the service. A Unit of Access for the MetaRepo is defined as the single call or
action (e.g. upload, query, retrieve) performed on the service by an authenticated user.

In order to distinguish authenticated from non-authenticated access, public resources will be
indexed in a higher-level search engine at a later stage. In this way, direct access to the MetaRepo
(for authenticated users) will be monitored and calls to the VA service will be aggregated, while
the higher-level access via the search index (for non-authenticated users) will not be monitored.

MetaRepo uses a filter to detect each call to the service. Each access detected by the filter is
logged by the NEP backend, whereby as minimal private data as possible is stored. Currently, only
the ID of the authenticated user and the ID of the VA service are transmitted. The NEP backend
provides a REST endpoint to collect this data from an authenticated user, and additional data can
also be provided.

As pointed out in the NEP privacy policy [10], the MetaRepo collects monitoring data only in order
to send them to the NEP backend, without storing them locally. As described in Section 4.2, the
MetaRepo stores access control lists for every Metadata Document, which contain the proposal ID
and the user ID in order to grant/deny access to a specific resource. Any sensitive data contained
in Metadata Documents stored in the MetaRepo are neither checked or analysed, and are under
the responsibility of the creator of the resource.

6. Comparison of the current prototype to the
target architecture
The design of the overall architecture was envisaged in Deliverable D16.1 for Virtual Access (VA)
services [3]. According to the target architecture, each VA service is a web application running on
the infrastructure of the partner institution providing it. The usage of the VA services is restricted

22

to authenticated users. The authentication of the services is managed by the NEP Single Sign On
(SSO) system. The typical VA service does not require personal data to be communicated.

The first VA service prototype, MetaRepo, respects the general infrastructure design. In detail:

● The access to MetaRepo is managed by a SSO system
● MetaRepo is connected to the NEP central database
● The usage of MetaRepo is monitored by counting the single calls or actions performed by

authenticated users

The planned features of the final version of MetaRepo are only partially implemented in the current
prototype. In particular:

● MetaRepo will provide versioning, search and visualization. The current prototype provides
only versioning via naming convention

● MetaRepo will support XSD, JSON, and possibly RDF. The current prototype supports only
XSD and JSON

● Metadata Documents will be co-referenced via internal IDs. In the current prototype the
reference among documents is only possible via naming convention

● The user information and proposal details will be automatically taken from the NEP central
database, once the proposal ID has been selected from a dropdown menu in the MetaRepo
Graphical User Interface (GUI) . The current version of the GUI does not require any
dropdown menu, as the list of proposal IDs is transmitted in the user token during
authentication. The access rights of each document are implicitly managed via Access
Control Lists (ACLs)

● The MetaRepo GUI will be used for schema/document registration, editing, import,
visualization and search. The last two functionalities have not been implemented in the
current version of the GUI

● An additional indirect access (other than the GUI) will be performed by a mapping tool
(which will trigger the registration of a metadata document) or by a custom metadata
ingest interface (which will query the MetaRepo to retrieve a specific metadata document
and all its versions). This feature is not yet available in the current version, as the mapping
tool and the custom metadata ingest interface are still under development.

REFERENCES

[1] MetaStore documentation:
https://github.com/kit-data-manager/metastore2/blob/metastoreGui/restDocu.md

[2] DataCite Metadata Schema: https://schema.datacite.org

[3] NEP Deliverables: https://www.nffa.eu/outcomes/deliverables/

23

https://github.com/kit-data-manager/metastore2/blob/metastoreGui/restDocu.md
https://schema.datacite.org
https://www.nffa.eu/outcomes/deliverables/

[4] NEP MetaRepo: https://metarepo.nffa.eu

[5] NFFA-Europe portal: www.nffa.eu

[6] Metadata Editor: https://github.com/kit-data-manager/metadata-editor

[7] DICOM: https://www.dicomstandard.org

[8] Keycloak: https://www.keycloak.org

[9] JSON Web Token: https://jwt.io

[10] NEP privacy policy: https://nffa.eu/apply/privacy/

[11] NEP Proposal page: https://nffa.eu/ar/public/proposals

24

https://metarepo.nffa.eu
http://www.nffa.eu
https://github.com/kit-data-manager/metadata-editor
https://www.dicomstandard.org
https://www.keycloak.org
https://jwt.io
https://nffa.eu/apply/privacy/
https://nffa.eu/ar/public/proposals

